This paper reports our experience with irregular I/O and describes lessons learned when running applications with such I/O on supercomputers at the extreme scale. Specifically, we study how irregularities in I/O patterns (i.e., irregular amount of data written per process at each I/O step) in scientific simulations can cause increasing I/O times and substantial loss in scalability. To this end, we quantify the impact of irregular I/O patterns on the I/O performance of scientific applications at the extreme scale by statistically modeling the irregular I/O behavior of two scientific applications: the Monte Carlo application QMCPack and the adaptive mesh refinement application ENZO. For our testing, we feed our model into I/O kernels of two well-known I/O data models (i.e., ADIOS and HDF) to measure the performance of the two applications' I/O under different I/O settings. Empirically, we show how the growing data sizes and the irregular I/O patterns in these applications are both relevant factors impacting performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.