The economics of flash vs. disk storage is driving HPC centers to incorporate faster solid-state burst bu↵ers into the storage hierarchy in exchange for smaller parallel file system (PFS) bandwidth. In systems with an underprovisioned PFS, avoiding I/O contention at the PFS level will become crucial to achieving high computational e ciency. In this paper, we propose novel batch job scheduling techniques that reduce such contention by integrating I/O awareness into scheduling policies such as EASY backfilling. We model the available bandwidth of links between each level of the storage hierarchy (i.e., burst bu↵ers, I/O network, and PFS), and our I/O-aware schedulers use this model to avoid contention at any level in the hierarchy. We integrate our approach into Flux, a next-generation resource and job management framework, and evaluate the e↵ectiveness and computational costs of our I/O-aware scheduling. Our results show that by reducing I/O contention for underprovisioned PFSes, our solution reduces job performance variability by up to 33% and decreases I/O-related utilization losses by up to 21%, which ultimately increases the amount of science performed by scientific workloads.
The advancement of machine learning techniques and the heterogeneous architectures of most current supercomputers are propelling the demand for large multiscale simulations that can automatically and autonomously couple diverse components and map them to relevant resources to solve complex problems at multiple scales. Nevertheless, despite the recent progress in workflow technologies, current capabilities are limited to coupling two scales. In the first-ever demonstration of using three scales of resolution, we present a scalable and generalizable framework that couples pairs of models using machine learning and in situ feedback. We expand upon the massively parallel Multiscale Machine-Learned Modeling Infrastructure (MuMMI), a recent,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.