Coenzyme Q10 (CoQ10), a benzoquinone present in most organisms, plays an important role in the electron-transport chain, and its deficiency is associated with various neuropathies and muscular disorders. CoQ10 is the only lipid-soluble antioxidant found in humans, and for this, it is gaining popularity in the cosmetic and healthcare industries. To meet the growing demand for CoQ10, there has been considerable interest in ways to enhance its production, the most effective of which remains microbial fermentation. Previous attempts to increase CoQ10 production to an industrial scale have thus far conformed to the strategies used in typical metabolic engineering endeavors. However, the emergence of new tools in the expanding field of synthetic biology has provided a suite of possibilities that extend beyond the traditional modes of metabolic engineering. In this review, we cover the various strategies currently undertaken to upscale CoQ10 production, and discuss some of the potential novel areas for future research.
Post-glycosylphosphatidylinositol (GPI) attachment to proteins 3, also known as PGAP3 or PERLD1 (PER1-like domain-containing protein 1), participates in the lipid remodeling process of glycosylphosphatidylinositol (GPI) anchor proteins during post-translational modification. Functional defect in PERLD1 was previously hypothesized to influence this process in T-cells and their subsequent activation and proliferation. This current study aims to functionally characterize PERLD1 genetic variants and relate this with human immune cells proliferation rate upon stimulation. We first showed the association between a PERLD1 tag-single nucleotide polymorphism (tagSNP), rs2941504, and the development of asthma in our study population. This association remained significant after conditioning for the other asthma-associated SNP rs8076131 that is also located within the 17q12–21 region. Subsequent sequencing of 40 unrelated Singapore Chinese individuals identified 12 more common PERLD1 SNPs (minor allele frequency > 5%) that are in linkage disequilibrium (LD, r2 > 0.8) with rs2941504. Through in vitro studies, 7 of these SNPs were found to form a functional haplotype that influences alternative splicing of PERLD1 transcript. This result was validated in human peripheral blood mononuclear cell (PBMC), where the minor haplotype (Hap2) was shown to be associated with significantly increased PERLD1 truncated transcript. Additionally, Hap2 was found to be related to increased levels of several soluble GPI-anchored proteins (such as sCD55 and sCD59) in serum. Elevated sCD55 in the serum was demonstrated to reduce the proliferation rate of PBMCs upon phytohaemagglutinin (PHA) stimulation. Taken together, the current study has shown a functional PERLD1 haplotype, which modifies PBMC sensitivity upon stimulation and may contribute to the individual’s susceptibility to allergic asthma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.