The persistence of eight pharmaceuticals from multiple classes was studied in aquatic outdoor field microcosms. A method was developed for the determination of a mixture of acetaminophen, atorvastatin, caffeine, carbamazepine, levofloxacin, sertraline, sulfamethoxazole, and trimethoprim at microg/L levels from surface water of the microcosms using solid phase extraction and high-performance liquid chromatography-ultraviolet (HPLC-UV) and liquid chromatography tandem mass spectrometry (LC-MS-MS). Half-lives in the field ranged from 1.5 to 82 d. Laboratory persistence tests were performed to determine the relative importance of possible loss processes in the microcosms over the course of the study. Results from dark control experiments suggest hydrolysis was not important in the loss of the compounds. No significant differences were observed between measured half-lives of the pharmaceuticals in sunlight-exposed pond water and autoclaved pond water, which suggests photodegradation was important in limiting their persistence, and biodegradation was not an important loss process in surface water over the duration of the study. Observed photoproducts of several of the pharmaceuticals remained photoreactive, which led to further degradation in irradiated surface waters.
Antibiotics are known to have antichloroplastic properties, but their effects on aquatic higher plants are virtually unknown. In order to address this issue, 25 pharmaceuticals, including 22 antibiotics, were assessed for phytotoxicity to the aquatic higher plant Lemna gibba. A 7-d static-renewal test was used, and plants were treated with 0, 10, 30, 100, 300, and 1,000 microg/L of pharmaceutical-containing growth media. Phytotoxicity was assessed using multiple growth and biochemical endpoints. Effective concentration (EC)50, EC25, and EC10 values as well as tests for significant differences between treatments and controls lowest-observed-effect concentration (LOECs) were calculated for each endpoint. Twelve different classes of antibiotics were assessed; however, only members of the fluoroquinolone, sulfonamide, and tetracycline classes of antibiotics displayed significant phytotoxicity. The most toxic members of each of these classes tested were lomefloxacin, sulfamethoxazole, and chlortetracycline, with wet weight EC25 values of 38, 37, and 114 microg/L, respectively. Injury symptoms were comparatively uniform and consistent among chemical classes while degree of phytotoxicity varied considerably. Both of these criteria varied markedly between classes. Wet mass was consistently the most sensitive endpoint above 100 microg/L; conversely, frond number was the most sensitive below 100 microg/L. Pigment endpoints were significantly less sensitive than growth endpoints.
The exact mechanisms of BPA-mediated effects in reproduction are not fully understood; however, the environmental exposure to BPA - especially in fetal and neonatal period - deserves attention to preserve the reproductive ability in both sexes and to reduce the epigenetic risk for the offspring.
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its analogues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal differentiation, synaptic plasticity, neuroinflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releasing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting results have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This review offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.