We investigated word recognition in a Visually Grounded Speech model. The model has been trained on pairs of images and spoken captions to create visually grounded embeddings which can be used for speech to image retrieval and vice versa. We investigate whether such a model can be used to recognise words by embedding isolated words and using them to retrieve images of their visual referents. We investigate the timecourse of word recognition using a gating paradigm and perform a statistical analysis to see whether well known word competition effects in human speech processing influence word recognition. Our experiments show that the model is able to recognise words, and the gating paradigm reveals that words can be recognised from partial input as well and that recognition is negatively influenced by word competition from the word initial cohort.
Many computational models of speech recognition assume that the set of target words is already given. This implies that these models learn to recognise speech in a biologically unrealistic manner, i.e. with prior lexical knowledge and explicit supervision. In contrast, visually grounded speech models learn to recognise speech without prior lexical knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition. We investigate the time course of noun and verb recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation learning, aids the model in the discovery and recognition of words. Our experiments show that the model is able to recognise nouns in isolation and even learns to properly differentiate between plural and singular nouns. We also find that recognition is influenced by word competition from the word-initial cohort and neighbourhood density, mirroring word competition effects in human speech comprehension. Lastly, we find no evidence that vector quantisation is helpful in discovering and recognising words, though our gating experiment does show that the LSTM-VQ model is able to recognise the target words earlier.
Background: Computational models of speech recognition often assume that the set of target words is already given. This implies that these models do not learn to recognise speech from scratch without prior knowledge and explicit supervision. Visually grounded speech models learn to recognise speech without prior knowledge by exploiting statistical dependencies between spoken and visual input. While it has previously been shown that visually grounded speech models learn to recognise the presence of words in the input, we explicitly investigate such a model as a model of human speech recognition.
Methods:We investigate the time-course of word recognition as simulated by the model using a gating paradigm to test whether its recognition is affected by well-known word-competition effects in human speech processing. We furthermore investigate whether vector quantisation, a technique for discrete representation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.