Metal-organic frameworks (MOFs) containing redox active linkers have led to hybrid compounds exhibiting high electrical conductivity, which enables their use in applications in electronics and electrocatalysis. While many computational studies predict two-dimensional (2D) MOFs to be metallic, the majority of experiments show decreasing conductivity on cooling, indicative of a gap in the electronic band structure. To date, only a handful of MOFs have been reported that exhibit increased electrical conductivity upon cooling indicative of a metallic character, which highlights the need for better understanding the origin of the conductivity. A 2D MOF containing iron bis(dithiolene) motifs was recently reported to exhibit semiconducting behavior with record carrier mobility. Herein, we report that high crystallinity and the elimination of guest species results in an iron 2,3,6,7,10,11-tripheylenehexathiolate (THT) MOF, FeTHT, exhibiting a complex transition from semiconducting to metallic upon cooling, similar to what was shown for the analogous CoTHT. Remarkably, exposing the FeTHT to air significantly influences the semiconducting-to-metallic transition temperature (100 to 300 K), and ultimately results in a material showing metallic-like character at, and above, room temperature. This study indicates these materials can tolerate a substantial degree of doping that ultimately results in charge delocalization and metallic-like conductivity, an important step towards enabling their use in chemiresistive sensing and optoelectronics. carriers, preventing fast charge transport through the framework. This leads to materials with insulating or large gap semiconducting behavior. 5,14,15 Efforts to reduce the barriers to charge transport have included the addition of guest species, [16][17][18] doping, [19][20][21] and variation of the metal center and its oxidation state. [22][23][24][25][26] These modifications can encourage through-space 27,28 or throughbond 29 electronic transport and have led to MOFs with improved conductivities, with one example reporting tunable conductivity over six orders of magnitude. 17 Recently, the development of MOFs with redox active linkers has led to a breakthrough in the field of electrically conductive MOFs. 11,12,15,[30][31][32][33][34] Several two-and three-dimensional (2D/3D) frameworks with planar, π-conjugated, and redox-active linkers, like semiquinones/cathecolates, [35][36][37][38][39][40][41][42][43] diimines, [44][45][46][47][48] and dithiolenes, 19,21,[48][49][50][51][52][53][54][55][56][57][58][59][60][61] have been reported to display high electrical conductivity. Yet, while computational studies often predict these 2D MOFs to be metallic, 50,[62][63][64][65] the majority of the frameworks reported display a decrease in conductivity on cooling as thermally-populated carriers are lost. In contrast, the primary mechanism for carrier scattering in metals is due to lattice vibrations that are significantly dampened at lower temperatures, resulting in more efficient transport o...
Niobium pentoxide (Nb2O5) has been extensively reported for applications of electrochemical energy storage, memristors, solar cells, light emitting diodes (LEDs), and electrochromic devices.The thermal properties of Nb2O5 play a critical role in device performance of these applications.However, very few studies on the thermal properties of Nb2O5 have been reported and a fundamental understanding of heat transport in Nb2O5 is still lacking. The present work closes this gap and provides the first study of thermal conductivity of amorphous Nb2O5 thin films. Ultralow thermal conductivity is observed without any size effect in films as thin as 48 nm, which indicates that propagons contribute negligibly to the thermal conductivity and that the thermal transport is dominated by diffusons. Density-function-theory (DFT) simulations combined with a diffusonmediated minimum-thermal-conductivity model confirms this finding. Additionally, the measured thermal conductivity is lower than the amorphous limit (Cahill model), which proves that the diffuson model works better than the Cahill model to describe the thermal conduction mechanism in the amorphous Nb2O5 thin films. Additionally, the thermal conductivity does not change significantly with oxygen vacancy concentration. This stable and low thermal conductivity facilitates excellent performance for applications such as memristors.
The metal to insulator transition of NbO2 has been predicted to be a result of a structural phase transition (SPT) governed by Peierls physics. However, direct observation of the SPT using experimental techniques is still restricted by the extremely high transition temperature (810 °C) and the proclivity for NbO2 to oxidize into Nb2O5 above 400 °C when exposed to air. Here, we address these issues and employ temperature-dependent X-ray spectroscopy to describe the SPT of NbO2 from the bulk to surface. Temperature-dependent extended X-ray absorption fine structure spectroscopy (T-EXAFS) reveals a gradual weakening of the bulk Nb dimers over a large temperature range, which is indicative of a second-order Peierls mechanism. From these measurements, we determine the critical dimer distance to be 2.77 Å. Our T-EXAFS observations are supported by density functional theory of the phonon dispersion and the electronic density of states of NbO2, which conclude that the dimerization is responsible for the insulating phase. The dimerization does not extend to the topmost layers, where an oxygen rich surface reconstruction is preferred irrespective of temperature even in extremely reducing environments; changes in the low-energy electron diffraction patterns are attributed to oxygen concentration and are independent of the underlying bulk phase transitions of NbO2.
Metal-Nb2O5−x-metal memdiodes exhibiting rectification, hysteresis, and capacitance are demonstrated for applications in neuromorphic circuitry. These devices do not require any post-fabrication treatments such as filament creation by electroforming that would impede circuit scalability. Instead these devices operate due to Poole-Frenkel defect controlled transport where the high defect density is inherent to the Nb2O5−x deposition rather than post-fabrication treatments. Temperature dependent measurements reveal that the dominant trap energy is 0.22 eV suggesting it results from the oxygen deficiencies in the amorphous Nb2O5−x. Rectification occurs due to a transition from thermionic emission to tunneling current and is present even in thick devices (>100 nm) due to charge trapping which controls the tunneling distance. The turn-on voltage is linearly proportional to the Schottky barrier height and, in contrast to traditional metal-insulator-metal diodes, is logarithmically proportional to the device thickness. Hysteresis in the I–V curve occurs due to the current limited filling of traps.
Epitaxial films of vanadium dioxide (VO2) on rutile TiO2 substrates provide a means of strain-engineering the transition pathways and stabilizing of the intermediate phases between monoclinic (insulating) M1 and rutile...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.