Barley remains dated to the dawn of agriculture have been found at several archaeological sites 1,2 . In addition to indications that barley was an important food crop, recent excavations have fuelled speculation that beverages from fermented grains may have motivated early Neolithic hunter-gatherers to erect some of humankind's oldest monuments 3,4 . Moreover, brewing beer may also have played a role in the eastward spread of the crop after its initial domestication in the Fertile Crescent 5,6 . Since 2012, both genetic research and crop improvement in barley have benefited from a partly ordered draft sequence assembly 7 . This community resource has underpinned gene isolation 8,9 and population genomic studies 10 . However, these and other efforts have also revealed limitations of the current draft assembly. The limitations are often direct consequences of two characteristic genomic features: the extreme abundance of repetitive elements, and the severely reduced frequency of meiotic recombination in pericentromeric regions 11 .These factors have limited the contiguity of whole-genome assemblies to kilobase-sized sequences originating from low-copy regions of the genome. Thus, a detailed investigation of the composition of the repetitive fraction of the genome-including expanded gene families-and of the distribution of targets of selection and crop improvement in (genetically defined) pericentromeric regions has been beyond reach.Here we present a map-based reference sequence of the barley genome including the first comprehensively ordered assembly of the pericentromeric regions of a Triticeae genome. The resource highlights a conspicuous distinction between distal and proximal regions of chromosomes that is reflected by the intranuclear chromatin organization. Moreover, chromosomal compartments are differentiated by an exponential gradient of gene density and recombination rate, striking contrasts in the distribution of retrotransposon families, and distinct patterns of genetic diversity.Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlightin...
MotivationMicrosatellites are a widely-used marker system in plant genetics and forensics. The development of reliable microsatellite markers from resequencing data is challenging.ResultsWe extended MISA, a computational tool assisting the development of microsatellite markers, and reimplemented it as a web-based application. We improved compound microsatellite detection and added the possibility to display and export MISA results in GFF3 format for downstream analysis.Availability and ImplementationMISA-web can be accessed under http://misaweb.ipk-gatersleben.de/. The website provides tutorials, usage note as well as download links to the source code.
Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX).
Mapping-by-sequencing has emerged as a powerful technique for genetic mapping in several plant and animal species. As this resequencing-based method requires a reference genome, its application to complex plant genomes with incomplete and fragmented sequence resources remains challenging. We perform exome sequencing of phenotypic bulks of a mapping population of barley segregating for a mutant phenotype that increases the rate of leaf initiation. Read depth analysis identifies a candidate gene, which is confirmed by the analysis of independent mutant alleles. Our method illustrates how the genomic resources of barley together with exome resequencing can underpin mapping-by-sequencing.
Chloroplasts fuel plant development and growth by converting solar energy into chemical energy. They mature from proplastids through the concerted action of genes in both the organellar and the nuclear genome. Defects in such genes impair chloroplast development and may lead to pigment-deficient seedlings or seedlings with variegated leaves. Such mutants are instrumental as tools for dissecting genetic factors underlying the mechanisms involved in chloroplast biogenesis. Characterization of the green-white variegated albostrians mutant of barley (Hordeum vulgare) has greatly broadened the field of chloroplast biology, including the discovery of retrograde signaling. Here, we report identification of the ALBOSTRIANS gene HvAST (also known as Hordeum vulgare CCT Motif Family gene 7, HvCMF7) by positional cloning as well as its functional validation based on independently induced mutants by Targeting Induced Local Lesions in Genomes (TILLING) and RNA-guided clustered regularly interspaced short palindromic repeats-associated protein 9 endonucleasemediated gene editing. The phenotypes of the independent HvAST mutants imply residual activity of HvCMF7 in the original albostrians allele conferring an imperfect penetrance of the variegated phenotype even at homozygous state of the mutation. HvCMF7 is a homolog of the Arabidopsis (Arabidopsis thaliana) CONSTANS, CO-like, and TOC1 (CCT) Motif transcription factor gene CHLOROPLAST IMPORT APPARATUS2, which was reported to be involved in the expression of nuclear genes essential for chloroplast biogenesis. Notably, in barley we localized HvCMF7 to the chloroplast, without any clear evidence for nuclear localization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.