A software tool was developed for the identification of simple sequence repeats (SSRs) in a barley ( Hordeum vulgare L.) EST (expressed sequence tag) database comprising 24,595 sequences. In total, 1,856 SSR-containing sequences were identified. Trimeric SSR repeat motifs appeared to be the most abundant type. A subset of 311 primer pairs flanking SSR loci have been used for screening polymorphisms among six barley cultivars, being parents of three mapping populations. As a result, 76 EST-derived SSR-markers were integrated into a barley genetic consensus map. A correlation between polymorphism and the number of repeats was observed for SSRs built of dimeric up to tetrameric units. 3'-ESTs yielded a higher portion of polymorphic SSRs (64%) than 5'-ESTs did. The estimated PIC (polymorphic information content) value was 0.45 +/- 0.03. Approximately 80% of the SSR-markers amplified DNA fragments in Hordeum bulbosum, followed by rye, wheat (both about 60%) and rice (40%). A subset of 38 EST-derived SSR-markers comprising 114 alleles were used to investigate genetic diversity among 54 barley cultivars. In accordance with a previous, RFLP-based, study, spring and winter cultivars, as well as two- and six-rowed barleys, formed separate clades upon PCoA analysis. The results show that: (1) with the software tool developed, EST databases can be efficiently exploited for the development of cDNA-SSRs, (2) EST-derived SSRs are significantly less polymorphic than those derived from genomic regions, (3) a considerable portion of the developed SSRs can be transferred to related species, and (4) compared to RFLP-markers, cDNA-SSRs yield similar patterns of genetic diversity.
MotivationMicrosatellites are a widely-used marker system in plant genetics and forensics. The development of reliable microsatellite markers from resequencing data is challenging.ResultsWe extended MISA, a computational tool assisting the development of microsatellite markers, and reimplemented it as a web-based application. We improved compound microsatellite detection and added the possibility to display and export MISA results in GFF3 format for downstream analysis.Availability and ImplementationMISA-web can be accessed under http://misaweb.ipk-gatersleben.de/. The website provides tutorials, usage note as well as download links to the source code.
An integrated barley transcript map (consensus map) comprising 1,032 expressed sequence tag (EST)-based markers (total 1,055 loci: 607 RFLP, 190 SSR, and 258 SNP), and 200 anchor markers from previously published data, has been generated by mapping in three doubled haploid (DH) populations. Between 107 and 179 EST-based markers were allocated to the seven individual barley linkage groups. The map covers 1118.3 cM with individual linkage groups ranging from 130 cM (chromosome 4H) to 199 cM (chromosome 3H), yielding an average marker interval distance of 0.9 cM. 475 EST-based markers showed a syntenic organisation to known colinear linkage groups of the rice genome, providing an extended insight into the status of barley/rice genome colinearity as well as ancient genome duplications predating the divergence of rice and barley. The presented barley transcript map is a valuable resource for targeted marker saturation and identification of candidate genes at agronomically important loci. It provides new anchor points for detailed studies in comparative grass genomics and will support future attempts towards the integration of genetic and physical mapping information.
Numerous CCT domain genes are known to control flowering in plants. They belong to the CONSTANS-like (COL) and PREUDORESPONSE REGULATOR (PRR) gene families, which in addition to a CCT domain possess B-box or response-regulator domains, respectively. Ghd7 is the most recently identified COL gene to have a proven role in the control of flowering time in the Poaceae. However, as it lacks B-box domains, its inclusion within the COL gene family, technically, is incorrect. Here, we show Ghd7 belongs to a larger family of previously uncharacterized Poaceae genes which possess just a single CCT domain, termed here CCT MOTIF FAMILY (CMF) genes. We molecularly describe the CMF (and related COL and PRR) gene families in four sequenced Poaceae species, as well as in the draft genome assembly of barley (Hordeum vulgare). Genetic mapping of the ten barley CMF genes identified, as well as twelve previously unmapped HvCOL and HvPRR genes, finds the majority map to colinear positions relative to their Poaceae orthologues. Combined inter-/intra-species comparative and phylogenetic analysis of CMF, COL and PRR gene families indicates they evolved prior to the monocot/dicot divergence ∼200 mya, with Poaceae CMF evolution described as the interplay between whole genome duplication in the ancestral cereal, and subsequent clade-specific mutation, deletion and duplication events. Given the proven role of CMF genes in the modulation of cereals flowering, the molecular, phylogenetic and comparative analysis of the Poaceae CMF, COL and PRR gene families presented here provides the foundation from which functional investigation can be undertaken.
SUMMARYApomixis, a natural form of asexual seed production in plants, has evolved independently in various taxa, and represents an important potential technology for agriculture. The switch to apomixis is based on de-regulation of developmental pathways originally leading to sexual seed formation. Hybridization and polyploidy, both typical characteristics of asexual plants and animals, are mechanisms that could trigger de-regulation. Here we show that up-regulation of alleles in apomeiotic ovules is mediated by genomic duplication, heterochrony and the residual effects of ancient hybridization in diploid apomicts of the Boechera holboellii complex. Using SuperSAGE, we have identified over 4000 differentially expressed mRNA tags between micro-dissected ovules from two diploid sexual (Boechera stricta and B. holboellii) and two diploid apomictic (Boechera divaricarpa) accessions. Pairwise sequence comparisons between tags enabled identification of allelic variants of the same loci. Up-regulated candidate apomeiosis alleles consistently have more than three related alleles, thus demonstrating transcription from duplicated loci. A further 543 alleles were heterochronically expressed between sexual and apomeiotic ovules at developmental stages 2-II to 2-IV. Intriguingly, 69 B. holboellii specific alleles were preferentially up-regulated in apomeiotic ovules, thus showing a remnant 'parent of origin' effect stemming from the Pleistocene origin of the hybrid B. divaricarpa from taxa related to B. holboellii and B. stricta. These data implicate polyploid gene dosage in the expression of asexual seed formation, and support hypotheses of de-regulation of the sexual pathway. The observed 'parent of origin' effect suggests that the genomic memory of hybridization has somehow been maintained after hundreds, if not thousands, of asexual generations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.