We demonstrated superresolution optical microscopy in a living higher animal. Stimulated emission depletion (STED) fluorescence nanoscopy reveals neurons in the cerebral cortex of a mouse with <70-nanometer resolution. Dendritic spines and their subtle changes can be observed at their relevant scales over extended periods of time.
We report on a fiber laser-based stimulated emission-depletion microscope providing down to ∼20 nm resolution in raw data images as well as 15-19 nm diameter probing areas in fluorescence correlation spectroscopy. Stimulated emission depletion pulses of nanosecond duration and 775 nm wavelength are used to silence two fluorophores simultaneously, ensuring offset-free colocalization analysis. The versatility of this superresolution method is exemplified by revealing the octameric arrangement of Xenopus nuclear pore complexes and by quantifying the diffusion of labeled lipid molecules in artificial and living cell membranes.
Neuregulin-1 (NRG1) gene variants are associated with increased genetic risk for schizophrenia. It is unclear whether risk haplotypes cause elevated or decreased expression of NRG1 in the brains of schizophrenia patients, given that both findings have been reported from autopsy studies. To study NRG1 functions in vivo, we generated mouse mutants with reduced and elevated NRG1 levels and analyzed the impact on cortical functions. Loss of NRG1 from cortical projection neurons resulted in increased inhibitory neurotransmission, reduced synaptic plasticity, and hypoactivity. Neuronal overexpression of cysteine-rich domain (CRD)-NRG1, the major brain isoform, caused unbalanced excitatory-inhibitory neurotransmission, reduced synaptic plasticity, abnormal spine growth, altered steady-state levels of synaptic plasticity-related proteins, and impaired sensorimotor gating. We conclude that an "optimal" level of NRG1 signaling balances excitatory and inhibitory neurotransmission in the cortex. Our data provide a potential pathomechanism for impaired synaptic plasticity and suggest that human NRG1 risk haplotypes exert a gain-of-function effect.
In optical microscopy, most red-emitting dyes provide only moderate performance due to unspecific binding, poor labeling efficiency, and insufficient brightness. Here we report on four novel red fluororescent dyes, including the first phosphorylated dye, created by combining a rigidized rhodamine backbone with various polar groups. They exhibit large fluorescence quantum yields and improved NHS ester stability. While these fluorophores are highly suitable for fluorescence microscopy in general, they excel in stimulated emission depletion (STED) microscopy, providing < 25 nm spatial resolution in raw images of cells.
Es que, realmente, dejando aparte los halagos del amor propio, el jardín de la neurología brinda al investigador espectáculos cautivadores y emociones artísticas incomparables. En él hallaron, al fin, mis instintos estéticos plena satisfacción. ¡Como el entomólogo a caza de mariposas de vistosos matices, mi atención perseguía, en el vergel de la substancia gris, células de formas delicadas y elegantes, las misteriosas mariposas del alma, cuyo batir de alas quién sabe si esclarecerá algún día el secreto de la vida mental! ("Really, the garden of neurology offers the researcher captivating spectacles and incomparable artistic emotions. My aesthetic instincts find their full satisfaction. Like the entomologist catching beautiful butterflies, my attention pursued in the garden of gray matter, the delicately and gracefully shaped cells, the mysterious butterflies whose wing beats might someday reveal the secret of mental life.")
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.