The device is placed on a 6-Fr catheter shaft and secured with a medical grade silicon rubber. For real time data acquisition, we developed a custom design FPGA based imaging platform to generate digital control sequences for the chip and collect RF data from Rx outputs. We performed imaging experiments using wire phantoms immersed in water to test the real time imaging system. The system has the potential to generate images at 32 fps rate with the particular catheter. The overall system is fully functional and shows promising image performance.
Stretchable gold microstructures are reliably transferred onto an extra-soft elastomeric substrate. Several major challenges, including failure-free transfer and reliable bonding with the substrate, are addressed. The simple and reproducible fabrication allows extensive study and optimization of the stretchability of meanders in terms of thickness, geometry, and substrate. The results provide new insights for designing stretchable electronics and novel routes for stretchrelated, mechanobiological cell-interface applications.
The investigation of the defect chemistry of solid oxides is of central importance for the understanding of redox processes. This can be performed by measuring conductivity as a function of the oxygen partial pressure, which is conventionally established by using buffer gas mixtures or oxygen pumps based on zirconia. However, this approach has some limitations, such as difficulty regulating oxygen partial pressure in some intermediate-pressure regions or the possibility of influencing the redox process by gases that can also be incorporated into the oxide or react with the surface via heterogeneous catalysis. Herein, we present an alternative physical method in which the oxygen partial pressure is controlled by dosing pure oxygen inside an ultra-high vacuum chamber. To monitor the conductivity of the oxide under investigation, we employ a dedicated four-probe measurement system that relies on the application of a very small AC voltage, in combination with lock-in data acquisition using highly sensitive electrometers, minimizing the electrochemical polarization or electro-reduction and degradation effects. By analyzing the model material SrTiO3, we demonstrate that its characteristic redox behavior can be reproduced in good agreement with the theory when performing simultaneous electrical conductivity relaxation (ECR) and high-temperature equilibrium conductivity (HTEC) measurements. We show that the use of pure oxygen allows for a direct analysis of the characteristic oxygen dose, which opens up various perspectives for a detailed analysis of the surface chemistry of redox processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.