Detailed knowledge about tree species composition is of great importance for forest management. The two identical European Space Agency (ESA) Sentinel-2 (S2) satellites provide data with unprecedented spectral, spatial and temporal resolution. Here, we investigated the potential benefits of using high temporal resolution data for classification of five coniferous and seven broadleaved tree species in a diverse Central European Forest. To run the classification, 18 cloud-free S2 acquisitions were analyzed in a two-step approach. The available scenes were first used to stratify the study area into six broad land-cover classes. Subsequently, additional classification models were created separately for the coniferous and the broadleaved forest strata. To permit a deeper analytical insight in the benefits of multi-temporal datasets for species identification, classification models were developed taking into account all 262,143 possible permutations of the 18 S2 scenes. Each model was fine-tuned using a stepwise recursive feature reduction. The additional use of vegetation indices improved the model performances by around 5 percentage points. Individual mono-temporal tree species accuracies range from 48.1% (January 2017) to 78.6% (June 2017). Compared to the best mono-temporal results, the multi-temporal analysis approach improves the out-of-bag overall accuracy from 72.9% to 85.7% for the broadleaved and from 83.8% to 95.3% for the coniferous tree species, respectively. Remarkably, a combination of six–seven scenes achieves a model quality equally high as the model based on all data; images from April until August proved most important. The classes European Beech and European Larch attain the highest user’s accuracies of 96.3% and 95.9%, respectively. The most important spectral variables to distinguish between tree species are located in the Red (coniferous) and short wave infrared (SWIR) bands (broadleaved), respectively. Overall, the study highlights the high potential of multi-temporal S2 data for species-level classifications in Central European forests.
In this paper a new approach for polyphonic piano note onset transcription is presented. It is based on a recurrent neural network to simultaneously detect the onsets and the pitches of the notes from spectral features. Long Short-Term Memory units are used in a bidirectional neural network to model the context of the notes. The use of a single regression output layer instead of the often used one-versus-all classification approach enables the system to significantly lower the number of erroneous note detections. Evaluation is based on common test sets and shows exceptional temporal precision combined with a significant boost in note transcription performance compared to current state-of-the-art approaches. The system is trained jointly with various synthesized piano instruments and real piano recordings and thus generalizes much better than existing systems.
Higgs couplings can be affected by physics beyond the Standard Model. We study modifications through interactions with a hidden sector and in specific composite Higgs models accessible at the LHC. Both scenarios give rise to congruent patterns of universal, or partially universal, shifts. In addition, Higgs decays to the hidden sector may lead to invisible decay modes which we also exploit. Experimental bounds on such potential modifications will measure the concordance of an observed Higgs boson with the Standard Model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.