Atmospheric inputs of iron to the open ocean are hypothesized to modulate ocean biogeochemistry. This review presents an integration of available observations of atmospheric iron and iron deposition, and also covers bioavailable iron distributions. Methods for estimating temporal variability in ocean deposition over the recent past are reviewed. Desert dust iron is estimated to represent 95% of the global atmospheric iron cycle, and combustion sources of iron are responsible for the remaining 5%. Humans may be significantly perturbing desert dust (up to 50%). The sources of bioavailable iron are less well understood than those of iron, partly because we do not know what speciation of the iron is bioavailable. Bioavailable iron can derive from atmospheric processing of relatively insoluble desert dust iron or from direct emissions of soluble iron from combustion sources. These results imply that humans could be substantially impacting iron and bioavailable iron deposition to ocean regions, but there are large uncertainties in our understanding.
Abstract. Desert dust perturbs climate by directly and indirectly interacting with incoming solar and outgoing long wave radiation, thereby changing precipitation and temperature, in addition to modifying ocean and land biogeochemistry. While we know that desert dust is sensitive to perturbations in climate and human land use, previous studies have been unable to determine whether humans were increasing or decreasing desert dust in the global average. Here we present observational estimates of desert dust based on paleodata proxies showing a doubling of desert dust during the 20th century over much, but not all the globe. Large uncertainties remain in estimates of desert dust variability over 20th century due to limited data. Using these observational estimates of desert dust change in combination with ocean, atmosphere and land models, we calculate the net radiative effect of these observed changes (top of atmosphere) over the 20th century to be −0.14 ± 0.11 W/m 2 (1990-1999 vs. 1905-1914). The estimated radiative changeCorrespondence to: N. M. Mahowald (mahowald@cornell.edu) due to dust is especially strong between the heavily loaded 1980-1989 and the less heavily loaded 1955-1964 time periods (−0.57 ± 0.46 W/m 2 ), which model simulations suggest may have reduced the rate of temperature increase between these time periods by 0.11 • C. Model simulations also indicate strong regional shifts in precipitation and temperature from desert dust changes, causing 6 ppm (12 PgC) reduction in model carbon uptake by the terrestrial biosphere over the 20th century. Desert dust carries iron, an important micronutrient for ocean biogeochemistry that can modulate ocean carbon storage; here we show that dust deposition trends increase ocean productivity by an estimated 6% over the 20th century, drawing down an additional 4 ppm (8 PgC) of carbon dioxide into the oceans. Thus, perturbations to desert dust over the 20th century inferred from observations are potentially important for climate and biogeochemistry, and our understanding of these changes and their impacts should continue to be refined.
We describe observations from the Fennec supersite at Bordj Badji Mokhtar (BBM) made during the June 2011 Fennec Intensive Observation Period. These are the first detailed in situ observations of meteorology and dust from the central Sahara, close to the center of the Saharan heat low and the summertime dust maximum. Historically, a shortage of such Saharan observations has created problems for evaluating processes, models, and remote sensing. There was a monsoon influence at BBM before 8 June and after 12 June, with dry Harmattan winds in between. A split boundary layer, generated by ventilation from the Atlantic, persisted during the drier phase. Extensive cold pools (haboobs) and microburst‐type events were regularly observed. Moisture reached BBM at night from the monsoon and the embedded haboobs. As well as the regularly occurring nocturnal low‐level jet (LLJ), a Saharan upper boundary layer (650 hPa) jet was observed, where winds feel drag from dry convection in the afternoon. This jet is linked to the diurnal cycles of moisture and cloud. Most dust was observed in the cloudier monsoon‐affected periods, and covarying dust and cloud amounts explain most of the variations in shortwave radiation that control the surface sensible flux. Dustiness is related to a standard parameterization of uplift using 10 m winds (“uplift potential”), and this is used to estimate uplift. Around 50% of uplift is nocturnal. Around 30% is from the LLJ, and 50% is from haboobs, which are mainly nocturnal. This demonstrates, for the first time from observations, the key role of haboobs, which are problematic for models.
[1] Dust plays an important role in climate, recognition of which has led to a concentrated research effort in field campaigns, development and analysis of remotely sensed data, and modeling to better understand dust. There have, however, been very few direct surface-based field measurements from key dust source regions. The Bodélé, Chad, has been shown to be one of the premier sources of dust in the world. This paper reports on the Bodélé Field Experiment (BoDEx 2005) which took place during February and March 2005 and presents the first surface-based measurements of the circulation over the Bodélé. On the basis of Pilot Balloon and AWS data, we confirm the existence of the Bodélé Low Level Jet (LLJ) and show that winds undergo a strong diurnal cycle such that strongest surface winds typically occur in the midmorning when momentum is mixed downward in turbulence induced by radiative heating. In contrast, the core of the LLJ, near 500 m, peaks during the evening and is weakest during the day. The LLJ was present on all days during BoDEx 2005, but winds at the surface reached speeds necessary for large-scale dust entrainment on only a few days. The winds strength during the main dust plume event of BoDEx (10-12 March 2005) was in the bottom third of March plume events of the last 4 years. Pathways of dust transport from the Bodélé using a trajectory model show potential advection of dust over the west African coastline within 5 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.