Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Hydrocarbons are worldwide-distributed pollutants that disturb various ecosystems. The aim of this study was to characterize the short-lapse dynamics of soil microbial communities in response to hydrocarbon pollution and different bioremediation treatments. Replicate diesel-spiked soil microcosms were inoculated with either a defined bacterial consortium or a hydrocarbonoclastic bacterial enrichment and incubated for 12 weeks. The microbial community dynamics was followed weekly in microcosms using Illumina 16S rRNA gene sequencing. Both the bacterial consortium and enrichment enhanced hydrocarbon degradation in diesel-polluted soils. A pronounced and rapid bloom of a native gammaproteobacterium was observed in all dieselpolluted soils. A unique operational taxonomic unit (OTU) related to the Alkanindiges genus represented ϳ0.1% of the sequences in the original community but surprisingly reached >60% after 6 weeks. Despite this Alkanindiges-related bloom, inoculated strains were maintained in the community and may explain the differences in hydrocarbon degradation. This study shows the detailed dynamics of a soil bacterial bloom in response to hydrocarbon pollution, resembling microbial blooms observed in marine environments. Rare community members presumably act as a reservoir of ecological functions in high-diversity environments, such as soils. This rare-to-dominant bacterial shift illustrates the potential role of a rare biosphere facing drastic environmental disturbances. Additionally, it supports the concept of "conditionally rare taxa," in which rareness is a temporary state conditioned by environmental constraints.
Bacterial canker caused by Clavibacter michiganensis subsp. michiganensis (Cmm) is one of the most important bacterial diseases of tomato. In order to understand the emergence and dissemination of this pathogen in Chile, Chilean Cmm strains isolated from different sites in central Chile were characterized and compared to a worldwide collection of strains. Multilocus sequence analysis and typing (MLSA‐MLST) based on five housekeeping genes, i.e. atpD, dnaK, gyrB, ppk and recA, and multilocus variable number of tandem repeats (VNTR) analysis (MLVA) based on eight VNTRs were used. Low diversity was found using MLSA‐MLST among the 25 Chilean strains, which clustered into three groups, each corresponding to a single sequence type (ST). Group I contained most strains (21/25), isolated over different years from Valparaíso and O'Higgins regions. Group II contained only one strain from Maule region that was isolated in 2005. These two groups belonged to the same genetic lineage. Group III contained three strains from Valparaíso region isolated in 2004, 2012 and 2013. MLVA also distributed the strains into the same three groups. Group III strains shared the same ST as strains from Algeria, Belgium, France, the Netherlands, Uruguay and the USA. Group II strains shared the same ST as strains from Brazil and Uruguay, while Group I strains shared the same ST as two strains of unknown origin. This study shows that Cmm strains from central Chile tend to be clonal and have similar genetic profiles to strains from other countries.
Two-phase olive mill waste (TPOMW) is a semisolid effluent that is rich in contaminating polyphenols and is produced in large amounts by the industry of olive oil production. Laboratory-scale bioreactors were used to investigate the biodegradation of TPOMW by its indigenous microbiota. The effect of nutrient addition (inorganic N and P) and aeration of the bioreactors was studied. Microbial changes were investigated by PCR-temperature time gradient electrophoresis (TTGE) and following the dynamics of polar lipid fatty acids (PLFA). The greatest decrease in the polyphenolic and organic matter contents of bioreactors was concomitant with an increase in the PLFA fungal/bacterial ratio. Amplicon sequences of nuclear ribosomal internal transcribed spacer region (ITS) and 16S rDNA allowed identification of fungal and bacterial types, respectively, by comparative DNA sequence analyses. Predominant fungi identified included members of the genera Penicillium, Candida, Geotrichum, Pichia, Cladosporium, and Aschochyta. A total of 14 bacterial genera were detected, with a dominance of organisms that have previously been associated with plant material. Overall, this work highlights that indigenous microbiota within the bioreactors through stimulation of the fungal fraction, is able to degrade the polyphenolic content without the inoculation of specific microorganisms.
Phytoplankton blooms taking place during the warm season drive high productivity in Antarctic coastal seawaters. Important temporal and spatial variations exist in productivity patterns, indicating local constraints influencing the phototrophic community. Surface water in Chile Bay (Greenwich Island, South Shetlands) is influenced by freshwater from the melting of sea ice and surrounding glaciers, however it is not a widely studied system. The phyto-and bacterioplankton communities in Chile Bay were studied over two consecutive summers; during a low productivity period (Chlorophyll a < 0.05 mg m -3) and an ascendant phototrophic bloom (Chlorophyll a up to 2.38 mg m -3 ). Microbial communities were analyzed by 16S rRNAincluding plastidialgene sequencing. Diatoms (mainly Thalassiosirales) were the most abundant phytoplankton, particularly during the ascendant bloom. Bacterioplankton in the low productivity period was less diverse and dominated by a few operational taxonomic units (OTUs), related to Colwellia and Pseudoalteromonas. Alpha diversity was higher during the bloom, where several Bacteroidetes taxa absent in the low productivity period were present. Network analysis indicated that phytoplankton relative abundance was correlated with bacterioplankton phylogenetic diversity and the abundance of several bacterial taxa. Hubsthe most connected OTUs in the networkwere not the most abundant OTUs and included some poorly described taxa in Antarctica, such as Neptunomonas and Ekhidna. In summary, the results of this study indicate that in Antarctic Peninsula coastal waters, such as Chile Bay, higher bacterioplankton community diversity occurs during a phototrophic bloom. This is likely a result of primary production, providing a source of fresh organic matter to bacterioplankton.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.