Confocal mini-microscopy allows rapid in-vivo molecular and subsurface imaging of normal and pathological tissue in the gastrointestinal tract at high resolution. Because this technology is applicable to humans, it might impact on future in-vivo microsocpic and molecular diagnosis of diseases such as cancer and inflammation.
The enteropathogenic Yersinia enterocolitica strains have several systems for scavenging iron from their environment. We have studied the expression of the fyuA gene, which encodes the outer membrane receptor for the siderophore yersiniabactin (Ybt), and the hemR gene, which encodes the receptor for heme, using the reporter genes gfp (encoding green fluorescent protein) and luc (encoding firefly luciferase). To study gene expression in vitro as well as in vivo, we have constructed several translational reporter gene fusions to monitor simultaneously expression of fyuA and hemR or expression of one gene by a gfp-luc tandem reporter. Results of the in vitro expression analysis (liquid media) indicated that fyuA and hemR are strongly derepressed under iron starvation conditions, resulting in strong fluorescence and/or luminescence at 27°C. In the in vivo BALB/C mouse infection model, tissue-specific expression of fyuA and hemR reporter fusions was observed. Surprisingly, fyuA and hemR reporter constructs were weakly expressed by yersiniae located in the liver and intestinal lumen, whereas strong expression was found for yersiniae in the peritoneal cavity and moderate expression was found in the spleen. Strikingly, yersiniae carrying fyuA or hemR reporter fusions exhibited threefold-stronger signals when grown in the peritoneal cavity of mice than those growing under iron derepression in vitro. This hyperexpression suggests that besides Fur derepression, additional activators may be involved in the enhanced expression of fyuA and hemR under peritoneal growth conditions. Differential expression of the fyuA and hemR reporter fusions could not be observed, suggesting similar regulation of fyuA and hemR in the mouse infection model.
AIM:To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents.
METHODS:A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation. Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm) were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle, stable contact. Tissue specimens were sampled for histopathological correlation.
RESULTS:The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice.Real time microscopic imaging with the confocal minimicroscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging.
CONCLUSION:Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures. The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients.
Introduction:We evaluated a newly developed miniaturized confocal laser microscopy probe for real-time in vivo molecular and morphological imaging of normal, inflammatory, and malignant tissue in rodents. Methods: In the rigid mini-microscopy probe (diameter 7 mm), a single line laser delivers an excitation wavelength of 488 nm. Optical slice thickness is 7 µm, lateral resolution 0.7 µm. The range of the z-axis is 0 -250 µm below the tissue surface. Organ systems were examined in vivo in rodent models of human diseases. FITC-labeled Lycopersion esculentum lectin was injected or selected cell populations stained for molecular targeting. Morphological imaging was performed using fluorescein sodium, FITC-labeled dextran, and/or acriflavine hydrochloride. Results: Cellular and subcellular details could be readily visualised in vivo at high resolution. Tissue characteristics of different organs were rendered at real time. Selective blood cell staining allowed observation of blood flow and cell migration. Inflammatory diseases such as hepatitis were diagnosed, and tumors were characterized under microscopic control in vivo. Discussion: Confocal mini-microscopy allows real time in vivo molecular and morphological histologic imaging at high resolution of normal and diseased tissue. Since confocal microscopy is applicable to humans, this technology will have a high impact on different faculties in medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.