Automatic segmentation of the liver and hepatic lesions is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment liver and lesions in CT and MRI abdomen images using cascaded fully convolutional neural networks (CFCNs) enabling the segmentation of large-scale medical trials and quantitative image analyses. We train and cascade two FCNs for the combined segmentation of the liver and its lesions. As a first step, we train an FCN to segment the liver as ROI input for a second FCN. The second FCN solely segments lesions within the predicted liver ROIs of step 1. CFCN models were trained on an abdominal CT dataset comprising 100 hepatic tumor volumes. Validation results on further datasets show that CFCN-based semantic liver and lesion segmentation achieves Dice scores over 94% for the liver with computation times below 100s per volume. We further experimentally demonstrate the robustness of the proposed method on 38 MRI liver tumor volumes and the public 3DIRCAD dataset.
This paper introduces a time-variant reverberation algorithm as an extension of the feedback delay network (FDN). By modulating the feedback matrix nearly continuously over time, a complex pattern of concurrent amplitude modulations of the feedback paths evolves. Due to its complexity, the modulation produces less likely perceivable artifacts and the time-variation helps to increase the liveliness of the reverberation tail. A listening test, which has been conducted, confirms that the perceived quality of the reverberation tail can be enhanced by the feedback matrix modulation. In contrast to the prior art time-varying allpass FDNs, it is shown that unitary feedback matrix modulation is guaranteed to be stable. Analytical constraints on the pole locations of the FDN help to describe the modulation effect in depth. Further, techniques and conditions for continuous feedback matrix modulation are presented.
Abstract-Lossless Feedback Delay Networks (FDNs) are commonly used as a design prototype for artificial reverberation algorithms. The lossless property is dependent on the feedback matrix, which connects the output of a set of delays to their inputs, and the lengths of the delays. Both, unitary and triangular feedback matrices are known to constitute lossless FDNs, however, the most general class of lossless feedback matrices has not been identified. In this contribution, it is shown that the FDN is lossless for any set of delays, if all irreducible components of the feedback matrix are diagonally similar to a unitary matrix. The necessity of the generalized class of feedback matrices is demonstrated by examples of FDN designs proposed in literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.