In this paper, injectable, thermosensitive smart hydrogel local drug delivery systems (LDDSs) releasing the model antitumour drug 5-fluorouracil (5-FU) were developed. The systems were based on biodegradable triblock copolymers synthesized via ring opening polymerization (ROP) of ε-caprolactone (CL) in the presence of poly(ethylene glycol) (PEG) and zirconium(IV) acetylacetonate (Zr(acac)4), as co-initiator and catalyst, respectively. The structure, molecular weight (Mn) and molecular weight distribution (Đ) of the synthesized materials was studied in detail using nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC) techniques; the optimal synthesis conditions were determined. The structure corresponded well to the theoretical assumptions. The produced hydrogels demonstrated a sharp sol–gel transition at temperature close to physiological value, forming a stable gel with good mechanical properties at 37 °C. The kinetics and mechanism of in vitro 5-FU release were characterized by zero order, first order, Higuchi and Korsmeyer–Peppas mathematical models. The obtained results indicate good release control; the kinetics were generally defined as first order according to the predominant diffusion mechanism; and the total drug release time was approximately 12 h. The copolymers were considered to be biodegradable and non-toxic; the resulting hydrogels appear to be promising as short-term LDDSs, potentially useful in antitumor therapy.
Three-arm polylactides (PLA) containing 0.2, 7.6, and 13% of d-lactic acid monomeric units were obtained and refunctionalized into ATRP macroinitiators via esterification of hydroxyl groups with 2-bromoisobutyryl bromide. These polymeric matrices underwent enzymatic degradation with various rates and revealed negative results on cytotoxicity and genotoxicity tests. Camptothecin (CPT), which is an anticancer active substance, was transformed into acrylic monomers; however, simple CPT acrylate was not able to polymerization whereas methacrylate with a linker was ready for FRP and ATRP. The latter monomer was used for ATRP initiated with various PLA macroinitiators in order to form block copolymer conjugates of CPT with high load of drug. Based on kinetic studies at various temperatures, it was found out that the polymerization stopped at certain monomer conversion because of the ceiling temperature. The content of CPT in these conjugates was estimated by means of 1H NMR, quadruple detection array GPC, and elemental analysis and was in the range 8.0–16.9 wt %. The products were morphologically heterogeneous, and the shapes and size of the nano-/microstructures were influenced by crystallinity of the PLA segment which was shown in AFM images. Terpolymer block conjugates consisting of addition PEGMA monomeric units were synthesized as well in order to increase hydrophilicity of the polymers and to protect a lactone ring in CPT structure. The studies on CPT release were carried out in vitro and revealed that the rate of CPT discharge was influenced by the structure of PLA and conjugate composition; however, it was near to zero-order kinetics. The analysis using the Korsmeyer–Peppas model suggests that drug release was governed rather according supercase II transport (n > 1) which shows that it is a highly controlled process.
In the presented paper, two basic strategies that can be used in the processes of chemical recycling of polyester material were described. The first of them involves increasing the molar mass of recycled materials in the solid-state polycondensation (SSP) process and/or joining their chains with various types of substances easily reacting with the end groups of polyesters (so-called extending agents). The essence of the second strategy is the degradation of the material under the influence of various protogenic agents (such as water, alcohols, glycols and amines) to obtain low-molecular products or oligomers that can be used as raw materials in the synthesis of many classes of polymers. The methods that are already used in PET [poly(ethylene terephthalate)] recycling and the possibility of their extension to other types of polyesters are both shown.
One promising method for cartilage regeneration involves combining known methods, such as the microfracture technique with biomaterials, e.g., scaffolds (membranes). The most important feature of such implants is their appropriate rate of biodegradation, without the production of toxic metabolites. This study presents work on two different membranes made of polyester (L-lactide-co-ε-caprolactone-PLCA) named “PVP and “Z”. The difference between them was the use of different pore precursors—polyvinylpyrrolidone in the “PVP” scaffold and gelatin in the “Z” scaffold. These were implemented in the articular cartilage defects of rabbit knee joints (defects were created for the purpose of the study). After 8, 16, and 24 weeks of observation, and the subsequent termination of the animals, histopathology and gel permeation chromatography (GPC) examinations were performed. Statistical analysis proved that the membranes support the regeneration process. GPC testing proved that the biodegradation process is progressing exponentially, causing the membranes to degrade at the appropriate time. The surgical technique we used meets all the requirements without causing the membrane to migrate after implantation. The “PVP” membrane is better due to the fact that after 24 weeks of observation there was a statistical trend for higher histological ratings. It is also better because it is easier to implant due to its lower fragility then membrane “Z”. We conclude that the selected membranes seem to support the regeneration of articular cartilage in the rabbit model.
In the age of mobile electronics and increased aerospace interest, multifunctional materials such as the polymer composites reported here are interesting alternatives to conventional materials, offering reduced cost and size of an electrical device packaging. We report a detailed study of an ecological and dual-functional polymer composite for electromagnetic interference (EMI) shielding and heat management applications. We studied a series of polylactic acid/graphene nanoplatelet composites with six graphene nanoplatelet loadings, up to 15 wt%, and three different flake lateral sizes (0.2, 5 and 25 μm). The multifunctionality of the composites is realized via high EMI shielding efficiency exceeding 40 dB per 1 mm thick sample and thermal conductivity of 1.72 W/mK at 15 wt% nanofiller loading. The EMI shielding efficiency measurements were conducted in the microwave range between 0.2 to 12 GHz, consisting of the highly relevant X-band (8–12 GHz). Additionally, we investigate the influence of the nanofiller lateral size on the studied physical properties to optimize the studied functionalities per given nanofiller loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.