The mechanism of the Heck C-C coupling reaction catalyzed by Pd@MOFs has been investigated using operando X-ray absorption spectroscopy (XAS) and powder X-ray diffraction (PXRD) combined with transmission electron microscopy (TEM) analysis and nuclear magnetic resonance (H NMR) kinetic studies. A custom-made reaction cell was used, allowing operando PXRD and XAS data collection using high-energy synchrotron radiation. By analyzing the XAS data in combination with ex situ studies, the evolution of the palladium species is followed from the as-synthesized to its deactivated form. An adaptive reaction mechanism is proposed. Mononuclear Pd(II) complexes are found to be the dominant active species at the beginning of the reaction, which then gradually transform into Pd nanoclusters with 13-20 Pd atoms on average in later catalytic turnovers. Consumption of available reagent and substrate leads to coordination of Cl ions to their surfaces, which causes the poisoning of the active sites. By understanding the deactivation process, it was possible to tune the reaction conditions and prolong the lifetime of the catalyst.
Ten mixed-linker metal-organic frameworks [Al(OH)(m-BDC-X)(1-y)(m-BDC-SO3H)y] (H2BDC = 1,3-benzenedicarboxylic acid; X = H, NO2, OH) exhibiting the CAU-10-type structure were synthesized. The compounds can be grouped into three series according to the combination of ligands employed. The three series of compounds were obtained by employing different ratios of m-H2 BDC-X and m-H2BDC-SO3Li. The resulting compounds, which are denoted CAU-10-H/Sx, -N/Sx and -O/Sx, show exceptionally high thermal stability for sulfonated materials of up to 350 °C. Detailed characterization with special focus on polarity and acidity was performed, and the impact of the additional SO3H groups is clearly demonstrated by changes in the sorption affinities/capacities towards several gases and water vapor. In addition, selected samples were evaluated for proton conductivity and as catalysts for the gas-phase dehydration of ethanol to ethylene. While only very low proton conductivities were observed, a pronounced increase in catalytic activity was achieved. Although reactions were performed at temperatures of 250 and 300 °C for more than 40 h, no desulfonation and no loss of crystallinity were observed, and stable ethanol conversion resulted. This demonstrates the high stability of this material.
A new layered mesoporous
Zr-MOF of composition [Zr30O20(OH)26(OAc)18L18]
was synthesized by employing 5-acetamidoisophthalic acid (H2L) using acetic acid as the solvent. The new MOF, denoted
as CAU-45, exhibits a honeycomb structure of stacked layers which
comprise both hexa- and dodecanucelar zirconium clusters. Its structure
was solved from submicrometer-sized crystals by continuous rotation
electron diffraction (cRED). Liquid phase exfoliation and size selection
were successfully performed on the material.
Herein is reported the utilization of acetonitrile as a new solvent for the synthesis of the three significantly different benchmark metal–organic frameworks (MOFs) CAU‐10, Ce‐UiO‐66, and Al‐MIL‐53 of idealized composition [Al(OH)(ISO)], [Ce6O4(OH)4(BDC)6], and [Al(OH)(BDC)], respectively (ISO2−: isophthalate, BDC2−: terephthalate). Its use allowed the synthesis of Ce‐UiO‐66 on a gram scale. While CAU‐10 and Ce‐UiO‐66 exhibit properties similar to those reported elsewhere for these two materials, the obtained Al‐MIL‐53 shows no structural flexibility upon adsorption of hydrophilic or hydrophobic guest molecules such as water and xenon and is stabilized in its large‐pore form over a broad temperature range (130–450 K). The stabilization of the large‐pore form of Al‐MIL‐53 was attributed to a high percentage of noncoordinating −COOH groups as determined by solid‐state NMR spectroscopy. The defective material shows an unusually high water uptake of 310 mg g−1 within the range of 0.45 to 0.65 p/p°. In spite of showing no breathing effect upon water adsorption it exhibits distinct mechanical properties. Thus, mercury intrusion porosimetry studies revealed that the solid can be reversibly forced to breathe by applying moderate pressures (≈60 MPa).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.