Two members of the Benyviridae family and genus Benyvirus, Beet soil-borne mosaic virus (BSBMV) and Beet necrotic yellow vein virus (BNYVV), possess identical genome organization, host range and high sequence similarity; they infect Beta vulgaris with variable symptom expression. In the US, mixed infections are described with limited information about viral interactions. Vectors suitable for agroinoculation of all genome components of both viruses were constructed by isothermal in vitro recombination. All 35S promoter-driven cDNA clones allowed production of recombinant viruses competent for Nicotiana benthamiana and Beta macrocarpa systemic infection and Polymyxa betae transmission and were compared to available BNYVV B-type clone. BNYVV and BSBMV RNA1 + 2 reassortants were viable and spread long-distance in N. benthamiana with symptoms dependent on the BNYVV type. Small genomic RNAs were exchangeable and systemically infected B. macrocarpa. These infectious clones represent a powerful tool for the identification of specific molecular host-pathogen determinants.
Post-harvest colonization of sugar beets accompanied by rot development is a serious problem due to sugar losses and negative impact on processing quality. Studies on the microbial community associated with rot development and factors shaping their structure are missing. Therefore, high-throughput sequencing was applied to describe the influence of environment, plant genotype and storage temperature (8°C and 20°C) on three different communities in stored sugar beets, namely fungi (internal transcribed spacers 1 and 2), Fusarium spp. (elongation factor-1α gene fragment) and oomycetes (internal transcribed spacers 1). The composition of the fungal community changed during storage mostly influenced by the storage temperature followed by a weak environmental effect. Botrytis cinerea was the prevalent species at 8°C whereas members of the fungal genera Fusarium and Penicillium became dominant at 20°C. This shift was independent of the plant genotype. Species richness within the genus Fusarium also increased during storage at both temperatures whereas the oomycetes community did not change. Moreover, oomycetes species were absent after storage at 20°C. The results of the present study clearly show that rot development during sugar beet storage is associated with pathogens well known as causal agents of post-harvest diseases in many other crops.
Beet necrotic yellow vein virus (BNYVV) is causal agent of rhizomania disease, which is the most devastating viral disease in sugar beet production leading to a dramatic reduction in beet yield and sugar content. The virus is transmitted by the ubiquitous distributed soil-borne plasmodiophoromycete Polymyxa betae that infects the root tissue of young sugar beet plants. Rz1 is the major resistance gene widely used in most sugar beet varieties to control BNYVV. The strong selection pressure on the virus population promoted the development of strains that can overcome Rz1 resistance. Resistance-breaking has been associated with mutations in the RNA3-encoded pathogenicity factor P25 at amino acid positions 67-70 (tetrad) as well as with the presence of an additional RNA component (RNA5). However, respective studies investigating the resistance-breaking mechanism by a reverse genetic system are rather scarce. Therefore, we studied Rz1 resistance-breaking in sugar beet using a recently developed infectious clone of BNYVV A-type. A vector free infection system for the inoculation of young sugar beet seedlings was established. This assay allowed a clear separation between a susceptible and a Rz1 resistant genotype by measuring the virus content in lateral roots at 52 dpi. However, mechanical inoculation of sugar beet leaves led to the occurrence of genotype independent local lesions, suggesting that Rz1 mediates a root specific resistance toward BNYVV that is not active in leaves. Mutation analysis demonstrated that different motifs within the P25 tetrad enable increased virus replication in roots of the resistant genotype. The resistance-breaking ability was further confirmed by the visualization of BNYVV in lateral roots and leaves using a fluorescent-labeled complementary DNA clone of RNA2. Apart from that, reassortment experiments evidenced that RNA5 enables Rz1 resistance-breaking independent of the P25 tetrad motif. Finally, we could identify a new resistance-breaking mutation, which was selected by high-throughput sequencing of a clonal virus population after one host passage in a resistant genotype. Our results demonstrate the feasibility of the reverse genetic system for resistance-breaking analysis and illustrates the genome plasticity of BNYVV allowing the virus to adapt rapidly to sugar beet resistance traits.
Infectious full-length clones of Beet necrotic yellow vein virus (BNYVV) and Beet soil-borne mosaic virus (BSBMV), both genus Benyvirus, were used for fluorescent labelling with the objective to study their interaction in coinfection and superinfection experiments. Fluorescent labelling was achieved by replacing a part of the RNA2 encoded coat protein read-through domain with either GFP or mRFP fluorescent marker proteins. This resulted in a translational fusion comprising the coat and the fluorescent protein. The labelled viruses were infectious and moved systemically in Nicotiana benthamiana, producing wild-type-like symptoms. Virus particles could be observed by electron microscopy, demonstrating that the viral read-through domain is dispensable for particle formation. Coinfection experiments revealed a spatial separation of differentially labelled populations of both identical and different Benyvirus species after N. benthamiana agro-inoculation. Identical observations were obtained when Tobacco rattle virus (TRV) was differentially labelled and used for coinfection. In contrast, coinfections of BSBMV with Potato virus X (PVX) or TRV resulted in many co-infected cells lacking spatial separation. Micro-projectile co-bombardment of N. benthamiana leaves revealed that two differently labelled populations of the same virus co-infected only a few cells before starting to separate. In superinfection experiments with N. benthamiana, BSBMV and BNYVV were unable to establish a secondary infection in plants that were previously infected with BNYVV or BSBMV. Taken together, this is the first work to describe the interaction between two economically important Benyviruses using fluorescence-labelled full-length clones.
Rhizomania of sugar beet, caused by Beet necrotic yellow vein virus (BNYVV), is characterized by excessive lateral root (LR) formation leading to dramatic reduction of taproot weight and massive yield losses. LR formation represents a developmental process tightly controlled by auxin signaling through AUX/IAA-ARF responsive module and LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcriptional network. Several LBD transcription factors play central roles in auxin-regulated LR development and act upstream of EXPANSINS (EXPs), cell wall (CW)-loosening proteins involved in plant development via disruption of the extracellular matrix for CW relaxation and expansion. Here, we present evidence that BNYVV hijacks these auxin-regulated pathways resulting in formation LR and root hairs (RH). We identified an AUX/IAA protein (BvAUX28) as interacting with P25, a viral virulence factor. Mutational analysis indicated that P25 interacts with domains I and II of BvAUX28. Subcellular localization of co-expressed P25 and BvAUX28 showed that P25 inhibits BvAUX28 nuclear localization. Moreover, root-specific LBDs and EXPs were greatly upregulated during rhizomania development. Based on these data, we present a model in which BNYVV P25 protein mimics action of auxin by removing BvAUX28 transcriptional repressor, leading to activation of LBDs and EXPs. Thus, the evidence highlights two pathways operating in parallel and leading to uncontrolled formation of LRs and RHs, the main manifestation of the rhizomania syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.