Recent advances in high-throughput sequencing technologies and bioinformatics have generated huge new opportunities for discovering and diagnosing plant viruses and viroids. Plant virology has undoubtedly benefited from these new methodologies, but at the same time, faces now substantial bottlenecks, namely the biological characterization of the newly discovered viruses and the analysis of their impact at the biosecurity, commercial, regulatory, and scientific levels. This paper proposes a scaled and progressive scientific framework for efficient biological characterization and risk assessment when a previously known or a new plant virus is detected by next generation sequencing (NGS) technologies. Four case studies are also presented to illustrate the need for such a framework, and to discuss the scenarios.
Biological control, or biocontrol, is the exploitation of living agents (incl. viruses) to combat pestilential organisms (incl. pathogens, pests, and weeds) for diverse purposes to provide human benefits. Thus, during the last century the practices and concepts involved have evolved in separate streams associated with distinct scientific and taxonomic disciplines. In parallel developments, there have been increasing references to biological control in industrial contexts and legislation, resulting in conceptual and terminological disintegration. The aim of this paper is to provide a global conceptual and terminological platform that facilitates future development of the field. We review use of previously suggested terms in key fields (e.g., phytopathology, entomology, and weed science), eliminate redundant terminology, identify three principles that should underpin the concept, and then present a new framework for biological control, rooted in seminal publications. The three principles establish that (1) only living agents can mediate biological control, (2) biological control always targets a pest, directly or indirectly, and (3) all biocontrol methods can be classified in four main categories depending on whether resident agents are utilized, with or without targeted human intervention (conservation biological control and natural biological control, respectively) or agents are added for permanent or temporary establishment (classical biological control and augmentative biological control, respectively). Correct identification of what is, and is not, biological control can help efforts to understand and optimize biological pest control for human and environmental benefits. The new conceptual framework may contribute to more uniform and appropriate regulatory approaches to biological control, and more efficient authorization and application of biocontrol products.
Cryopreservation of semen imposes deleterious effects on spermatozoa, either killing a certain proportion of cells or causing subtle damages on sperm function in the surviving population, changes not easily revealed by conventional assays. We have tested three functional assessment techniques in frozen-thawed ram semen from six adult rams, cryopreserved following eight different protocols (four extenders, and glycerol being added at two temperatures). Semen samples were thawed and the following analyses were carried out: motility (CASA), membrane integrity (Hoescht 33258 and fluorometry), chromatin status (chromatin stability test and fluorescence-assisted cell sorting, FACS) and mitochondrial activity (JC-1 and FACS). Fluorometry outcome did not correlate with the other parameters and showed large variation, albeit discriminating among cryopreservation techniques (P < 0.01). Mitochondrial activity correlated, but with low values, with total and progressive motility. However, good sperm motility and high velocity values were associated to high mitochondrial membrane potential. The chromatin stability assay was also successfully carried out, and had a good relationship with male factor (%COMP(α t) and S.D.(α t) parameters). In conclusion, fluorometric assessment of membrane integrity albeit rendering poor results, merits improvement, being a low-cost and handy technique, especially for work in the field. On the other hand, both assessments of chromatin stability and mitochondrial status (JC-1 staining), combined with
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.