Achilles tendon rupture (ATR) alters tissue composition, which may affect long-term tendon mechanics and ankle function during movement. However, a relationship between Achilles tendon (AT) properties and ankle joint function during gait remains unclear. The primary hypotheses were that (a) post-ATR tendon stiffness and length differ from the noninjured contralateral side and that (b) intra-patient asymmetries in AT properties correlate to ankle function asymmetries during gait, determined by ankle angles and moments. Ultrasonography and dynamometry were used to assess AT tendon stiffness, strain, elongation, and rest length in both limbs of 20 ATR patients 2-6 years after repair. Three-dimensional ankle angles and moments were determined using gait analysis. Injured tendons exhibited increased stiffness, rest length, and altered kinematics, with higher dorsiflexion and eversion, and lower plantarflexion and inversion. Intra-patient tendon stiffness and tendon length ratios were negatively correlated to intra-patient ratios of the maximum plantarflexion moment and maximum dorsiflexion angle, respectively. These results suggest that after surgical ATR repair, higher AT stiffness, but not a longer AT, may contribute to deficits in plantarflexion moment generation. These data further support the claim that post-ATR tendon regeneration results in the production of a tissue that is functionally different than noninjured tendon.
Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7), chronic ruptures (n = 6), acute ruptures (n = 13), and intact tendons (n = 4) were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR) analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL) 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2), inflammatory cells (cluster of differentaition (CD) 3, CD68, CD80, CD206), fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin), and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor) were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.