Achilles tendon rupture (ATR) alters tissue composition, which may affect long-term tendon mechanics and ankle function during movement. However, a relationship between Achilles tendon (AT) properties and ankle joint function during gait remains unclear. The primary hypotheses were that (a) post-ATR tendon stiffness and length differ from the noninjured contralateral side and that (b) intra-patient asymmetries in AT properties correlate to ankle function asymmetries during gait, determined by ankle angles and moments. Ultrasonography and dynamometry were used to assess AT tendon stiffness, strain, elongation, and rest length in both limbs of 20 ATR patients 2-6 years after repair. Three-dimensional ankle angles and moments were determined using gait analysis. Injured tendons exhibited increased stiffness, rest length, and altered kinematics, with higher dorsiflexion and eversion, and lower plantarflexion and inversion. Intra-patient tendon stiffness and tendon length ratios were negatively correlated to intra-patient ratios of the maximum plantarflexion moment and maximum dorsiflexion angle, respectively. These results suggest that after surgical ATR repair, higher AT stiffness, but not a longer AT, may contribute to deficits in plantarflexion moment generation. These data further support the claim that post-ATR tendon regeneration results in the production of a tissue that is functionally different than noninjured tendon.
BackgroundThe aim of this study was to evaluate the outcome of patients with a rupture of the Achilles tendon (ATR) treated percutaneously with the Dresden instrument in the hands of surgeons others than its inventors.Materials and methods118 patients (FU rate: 77.1%) with an acute ATR treated with the Dresden instrument were retrospectively evaluated. The following data were evaluated: pain intensity, functional limitation, Hannover score, Achilles tendon total rupture score (ATRS), AOFAS ankle-hindfoot score, Tegner activity score, complications, maximum calf circumference (MCC) on both sides, and the Matles test for tendon lengthening. The effect of the time point of the surgery after trauma was examined.ResultsHannover scores and ATRSs were good; AOFAS scores were excellent. Almost all patients returned to sporting activities postoperatively, and 66.1% were able to return to their previous level. The Tegner activity score revealed a slight posttraumatic decrease (p = 0.009) in the level of physical activity overall (pre-injury: 5.37 ± 0.15; postoperatively: 4.77 ± 0.15). The re-rupture rate was 2%. No sural nerve lesions and no infections were reported. Even after 3 years, there was still a difference in MCC that was correlated with inferior clinical score and AT lengthening. Patients treated within the first 2 days after ATR showed inferior clinical outcomes in terms of AOFAS score, ATRS, and functional limitations.ConclusionsPercutaneous ATR suture with the Dresden instrument is a safe and reliable method. Low complication and re-rupture rates, good clinical results, and a high rate of return to play support this fact. The time point of the operation may influence the outcome.
Background
Artificial intelligence (AI) is one of the most promising areas in medicine with many possibilities for improving health and wellness. Already today, diagnostic decision support systems may help patients to estimate the severity of their complaints. This fictional case study aimed to test the diagnostic potential of an AI algorithm for common sports injuries and pathologies.
Methods
Based on a literature review and clinical expert experience, five fictional “common” cases of acute, and subacute injuries or chronic sport-related pathologies were created: Concussion, ankle sprain, muscle pain, chronic knee instability (after ACL rupture) and tennis elbow. The symptoms of these cases were entered into a freely available chatbot-guided AI app and its diagnoses were compared to the pre-defined injuries and pathologies.
Results
A mean of 25–36 questions were asked by the app per patient, with optional explanations of certain questions or illustrative photos on demand. It was stressed, that the symptom analysis would not replace a doctor’s consultation. A 23-yr-old male patient case with a mild concussion was correctly diagnosed. An ankle sprain of a 27-yr-old female without ligament or bony lesions was also detected and an ER visit was suggested. Muscle pain in the thigh of a 19-yr-old male was correctly diagnosed. In the case of a 26-yr-old male with chronic ACL instability, the algorithm did not sufficiently cover the chronic aspect of the pathology, but the given recommendation of seeing a doctor would have helped the patient. Finally, the condition of the chronic epicondylitis in a 41-yr-old male was correctly detected.
Conclusions
All chosen injuries and pathologies were either correctly diagnosed or at least tagged with the right advice of when it is urgent for seeking a medical specialist. However, the quality of AI-based results could presumably depend on the data-driven experience of these programs as well as on the understanding of their users. Further studies should compare existing AI programs and their diagnostic accuracy for medical injuries and pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.