Tissue-specific overexpression of the glycogen synthase kinase-3 (GSK-3) ortholog shaggy (sgg) shortens the period of the Drosophila circadian locomotor activity cycle. The short period phenotype was attributed to premature nuclear translocation of the PERIOD/TIMELESS heterodimer. Reducing SGG/GSK-3 activity lengthens period, demonstrating an intrinsic role for the kinase in circadian rhythmicity. Lowered sgg activity decreased TIMELESS phosphorylation, and it was found that GSK-3 beta specifically phosphorylates TIMELESS in vitro. Overexpression of sgg in vivo converts hypophosphorylated TIMELESS to a hyperphosphorylated protein whose electrophoretic mobility, and light and phosphatase sensitivity, are indistinguishable from the rhythmically produced hyperphosphorylated TIMELESS of wild-type flies. Our results indicate a role for SGG/GSK-3 in TIMELESS phosphorylation and in the regulated nuclear translocation of the PERIOD/TIMELESS heterodimer.
The tumor suppressor gene p53 in mammalian cells plays a critical role in safeguarding the integrity of genome. It functions as a sequence-specific transcription factor. Upon activation by a variety of cellular stresses, p53 transactivates downstream target genes, through which it regulates cell cycle and apoptosis. However, little is known about p53 in invertebrates. Here we report the identification and characterization of a Drosophila p53 homologue gene, dp53. dp53 encodes a 385-amino acid protein with significant homology to human p53 (hp53) in the region of the DNA-binding domain, and to a lesser extent the tetramerization domain. Purified dp53 DNA-binding domain protein was shown to bind to the consensus hp53-binding site by gel mobility analysis. In transient transfection assays, expression of dp53 in Schneider cells transcriptionally activated promoters that contained consensus hp53-responsive elements. Moreover, a mutant dp53 (Arg-155 to His-155), like its hp53 counterpart mutant, exerted a dominant-negative effect on transactivation. Ectopic expression of dp53 in Drosophila eye disk caused cell death and led to a rough eye phenotype. dp53 is expressed throughout the development of Drosophila with highest expression levels in early embryogenesis, which has a maternal component. Consistent with this, dp53 RNA levels were high in the nurse cells of the ovary. It appears that p53 is structurally and functionally conserved from flies to mammals. Drosophila will provide a useful genetic system to the further study of the p53 network.
Transcriptional activation by, and therefore the physiologic impact of, activated tyrosine-phosphorylated STATs ( s ignal t ransducers and a ctivators of t ranscription) may be negatively regulated by proteins termed PIAS ( p rotein i nhibitors of a ctivated s tats), as shown by previous experiments with mammalian cells in culture. Here, by using the genetic modifications in Drosophila , we demonstrate the in vivo functional interaction of the Drosophila homologues stat92E and a Drosophila PIAS gene ( dpias ). To this end we use a LOF allele and conditionally overexpressed dpias in JAK-STAT pathway mutant backgrounds. We conclude that the correct dpias / stat92E ratio is crucial for blood cell and eye development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.