Cardiovascular diseases are predicted to be the most common cause of death worldwide by 2020. Here we show that angiotensin-converting enzyme 2 (ace2) maps to a defined quantitative trait locus (QTL) on the X chromosome in three different rat models of hypertension. In all hypertensive rat strains, ACE2 messenger RNA and protein expression were markedly reduced, suggesting that ace2 is a candidate gene for this QTL. Targeted disruption of ACE2 in mice results in a severe cardiac contractility defect, increased angiotensin II levels, and upregulation of hypoxia-induced genes in the heart. Genetic ablation of ACE on an ACE2 mutant background completely rescues the cardiac phenotype. But disruption of ACER, a Drosophila ACE2 homologue, results in a severe defect of heart morphogenesis. These genetic data for ACE2 show that it is an essential regulator of heart function in vivo.
The phosphatidylinositol 3' kinase (PI3'K) pathway, which regulates cell survival, is antagonized by the PTEN tumor suppressor. The regulation of PTEN is unclear. A genetic screen of Drosophila gain-of-function mutants identified DJ-1 as a suppressor of PTEN function. In mammalian cells, DJ-1 underexpression results in decreased phosphorylation of PKB/Akt, while DJ-1 overexpression leads to hyperphosphorylation of PKB/Akt and increased cell survival. In primary breast cancer samples, DJ-1 expression correlates negatively with PTEN immunoreactivity and positively with PKB/Akt hyperphosphorylation. In 19/23 primary non-small cell lung carcinoma samples, DJ-1 expression was increased compared to paired nonneoplastic lung tissue, and correlated positively with relapse incidence. DJ-1 is thus a key negative regulator of PTEN that may be a useful prognostic marker for cancer.
Tissue-specific overexpression of the glycogen synthase kinase-3 (GSK-3) ortholog shaggy (sgg) shortens the period of the Drosophila circadian locomotor activity cycle. The short period phenotype was attributed to premature nuclear translocation of the PERIOD/TIMELESS heterodimer. Reducing SGG/GSK-3 activity lengthens period, demonstrating an intrinsic role for the kinase in circadian rhythmicity. Lowered sgg activity decreased TIMELESS phosphorylation, and it was found that GSK-3 beta specifically phosphorylates TIMELESS in vitro. Overexpression of sgg in vivo converts hypophosphorylated TIMELESS to a hyperphosphorylated protein whose electrophoretic mobility, and light and phosphatase sensitivity, are indistinguishable from the rhythmically produced hyperphosphorylated TIMELESS of wild-type flies. Our results indicate a role for SGG/GSK-3 in TIMELESS phosphorylation and in the regulated nuclear translocation of the PERIOD/TIMELESS heterodimer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.