Carcinoma cells undergo epithelial-mesenchymal transition (EMT); however, contributions of EMT heterogeneity to disease progression remain a matter of debate. Here, we addressed the EMT status of ex vivo cultured circulating and disseminated tumor cells (CTCs/DTCs) in a syngeneic mouse model of metastatic breast cancer (MBC). Epithelial-type CTCs with a restricted mesenchymal transition had the strongest lung metastases formation ability, whereas mesenchymal-type CTCs showed limited metastatic ability. EpCAM expression served as a surrogate marker to evaluate the EMT heterogeneity of clinical samples from MBC, including metastases, CTCs, and DTCs. The proportion of epithelial-type CTCs, and especially DTCs, correlated with distant metastases and poorer outcome of patients with MBC. This study fosters our understanding of EMT in metastasis and underpins heterogeneous EMT phenotypes as important parameters for tumor prognosis and treatment. We further suggest that EpCAM-dependent CTC isolation systems will underestimate CTC numbers but will quantify clinically relevant metastatic cells.
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions ofEpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1 + mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM + endodermal and EpCAM − /vimentin + mesodermal clusters represents a novel regulatory feature during ESC differentiation.Epithelial cell adhesion molecule EpCAM was originally described as a cell surface antigen highly expressed in human carcinomas 1 . Today, we know that EpCAM is present as a heart-shaped cis-dimer at the cell surface 2 , and that it has a broader but nevertheless sharply restricted expression pattern in undifferentiated pluripotent
Optimizing renewable energy harvesting is of major importance in the following decades. In order to increase performance and efficiency, an ideal balance of mechanical and piezoelectric properties must be targeted. For this purpose, the approach of ceramic auxetic and honeycomb structures made of (Ba,Ca)(Zr,Ti)O3 (BCZT) which is produced via injection molding is considered. The main design parameter is the structural angle θ which is varied between −35° and 35°. Its effect on compressive strength, Young's modulus, and Poisson's ratio are determined via uniaxial compression tests and digital image correlation (DIC). Maximum compressive strength of 95 MPa at 0° (porosity of 59%) is found, which is superior to conventional porous ceramics of the same porosity. The piezoelectric constants d33 (max. 296 pC N−1) and g33 (max. 0.068 Vm N−1) are measured via the Berlincourt method and also exceed expectations, regardless of the structure. The theoretical models of Gibson and Ashby (mechanical) and Okazaki (piezoelectrical), as well as finite element method simulations, strengthen and explain the experimental results.
Purpose Glioblastoma is associated with especially poor outcome in the elderly. It is unclear if patients aged ≥80 years benefit from tumor-specific therapy as opposed to receiving best supportive care (BSC) only. Methods Patients with IDH-wildtype glioblastoma (WHO 2021), aged ≥80 years, and diagnosed by biopsy between 2010 and 2022 were included. Patient characteristics and clinical parameters were assessed. Uni- and multivariate analyses were performed. Results 76 patients with a median age of 82 (range 80–89) and a median initial KPS of 80 (range 50–90) were included. Tumor-specific therapy was initiated in 52 patients (68%). 22 patients (29%) received temozolomide monotherapy, 23 patients (30%) were treated with radiotherapy (RT) alone and 7 patients (9%) received combination therapies. In 24 patients (32%), tumor-specific therapy was omitted in lieu of BSC. Overall survival (OS) was longer in patients receiving tumor-specific therapy (5.4 vs. 3.3 months, p < 0.001). Molecular stratification showed that the survival benefit was owed to patients with MGMT promoter methylation (MGMTpos) who received tumor-specific therapy as opposed to BSC (6.2 vs. 2.6 months, p < 0.001), especially to those with better clinical status and no initial polypharmacy. Patients with unmethylated MGMT promoter (MGMTneg) did not benefit from tumor-specific therapy (3.6 vs. 3.7 months, p = 0.18). In multivariate analyses, better clinical status and MGMT promoter methylation were associated with prolonged survival (p < 0.01 and p = 0.01). Conclusion Benefit from tumor-specific treatment in patients with newly diagnosed glioblastoma aged ≥80 years might be restricted to MGMTpos patients, especially to those with good clinical status and no polypharmacy.
Background Microsurgical resection of spinal cord cavernous malformations can be assisted by intraoperative neurophysiological monitoring (IONM). While the clinical outcome after surgical resection has been discussed in several case series, the association of intraoperative IONM changes and detailed neurological outcome, however, has not been analyzed so far. Methods Seventeen patients with spinal cavernomas underwent surgery between 02/2004 and 06/2020. Detailed neurological and clinical outcome as well as IONM data including motor-evoked potential (MEP) and somatosensory-evoked potential (SSEP) monitoring were retrospectively analyzed. Intraoperative IONM changes were compared to outcome at 3-month and 1-year follow-up in order to identify surrogate parameters for an impending neurological deficit. Results Compared to the preoperative state, McCormick score at 1-year follow-up remained unchanged in 12 and improved in five patients, none worsened, while detailed neurological examination revealed a new or worsened sensorimotor deficit in 4 patients. The permanent 80% amplitude reduction of MEP and 50% amplitude reduction of SSEP showed the best diagnostic accuracy with a sensitivity of 100% and 67% respectively and a specificity of 73% and 93% respectively. The relative risk for a new neurological deficit at 1-year follow-up, when reversible IONM-deterioration was registered compared to irreversible IONM deterioration, was 0.56 (0.23–1.37) for MEP deterioration and 0.4 (0.18–0.89) for SSEP deterioration. Conclusions Reversible IONM changes were associated with a better neurological outcome at follow-up compared to irreversible IONM deterioration during SCCM surgery. Our study favors the permanent 80% amplitude reduction criterion for MEP and 50% amplitude reduction criterion for SSEP for further prospective evaluation of IONM significance and the effectiveness of corrective maneuvers during SCCM surgeries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.