In this paper, two algorithms for
solving the Inverse Dynamic Problem based on the Gibbs-Appell equations
are proposed and verified. Both are developed using mainly vectorial
variables, and the equations are expressed in a recursive form.
The first algorithm has a computational complexity of O(n2)
and is the least efficient of the two; the second
algorithm has a computational complexity of O(n). This algorithm will
be compared with one based on Newton-Euler equations of motion,
formulated in a similar way, and using mainly vectors in
its recursive formulation. The O(n) proposed algorithm will be used
to solve the Inverse Dynamic Problem in a PUMA industrial
robot.
Se presenta la aplicación combinada de dos técnicas mejoradas para el alisado de tensiones por zonas: la Recuperación Superconvergente (Superconvergent Patch Recovery, SPR) y la Recuperación por Equilibrio (Recovery by Equilibrium Patches, REP). Estas técnicas mejoradas sobre hexaedros en problemas con dominio tridimensional, permiten obtener resultados más exactos al utilizar el método de los elementos finitos. Para analizar el comportamiento de la combinación de estas técnicas, se realiza un procedimiento h-adaptativo, utilizando el estimador de error Zienkiewicz-Zhu para determinar el error que involucra el campo de tensiones alisado. Los resultados de convergencia e índice de efectividad muestran que ambas técnicas por separado son análogas cuando las mallas tienen grados de libertad elevados.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.