This paper proposes a novel architecture for plug-in electric vehicles (PEVs) dc charging station at the megawatt level, through the use of a grid-tied neutral point clamped (NPC) converter. The proposed bipolar dc structure reduces the step-down effort on the dc-dc fast chargers. In addition, this paper proposes a balancing mechanism that allows handling any difference on the dc loads while keeping the midpoint voltage accurately regulated. By formally defining the unbalance operation limit, the proposed control scheme is able to provide complementary balancing capabilities by the use of an additional NPC leg acting as a bidirectional dc-dc stage, simulating the minimal load condition and allowing the modulator to keep the control on the dc voltages under any load scenario. The proposed solution enables fast charging for PEVs concentrating several charging units into a central grid-tied converter. In this paper, simulation and experimental results are presented to validate the proposed charging station architecture.
Abstract-Large scale grid connected photovoltaic (PV) energy conversion systems have reached the megawatt level. This imposes new challenges on existing grid interface converter topologies and opens new opportunities to be explored. In this paper a new medium voltage multilevel-multistring configuration is introduced based on a three-phase cascaded H-bridge (CHB) converter and multiple string dc-dc converters. The proposed configuration enables a large increase of the total capacity of the PV system, while improving power quality and efficiency. The converter structure is very flexible and modular since it decouples the grid converter from the PV string converter, which allows to accomplish independent control goals.The main challenge of the proposed configuration is to handle the inherent power imbalances that occur not only between the different cells of one phase of the converter but also between the three phases. The control strategy to deal with these imbalances is also introduced in this paper. Simulation results of a 7-level CHB for a multistring PV system are presented to validate the proposed topology and control method.
With the increasing popularity of electric vehicles (EVs), there is an urgent demand to shorten the charging time, so the development of high-power charging stations with fast chargers is necessary to alleviate range anxiety for drivers. The charging station based on the neutral-point-clamped (NPC) converter can bring many merits, but it has unbalanced power problems in the bipolar dc bus. To solve this issue, comprehensive dc power balance management (PBM) in conjunction with highpower three-level dc-dc converter based fast charger is proposed in this paper. The active dc power balance management (APBM) is proposed to assist the central NPC converter in balancing power so that the additional balancing circuit is eliminated; while the passive dc power balance management (PPBM) is proposed to eliminate the fluctuating neutral-point currents and to ensure the balanced operation of fast chargers. The principles of APBM and PPBM are researched, the efficient integration between them is studied, and the overall control scheme for the fast charger is proposed. The power balance limits of APBM are explored, while the circulating currents of PPBM are analysed. Simulation and experimental results are presented to verify the effectiveness of the proposed fast charger with PBM functions.Index Terms-dc power balance management, electric vehicles, fast charger, plug-in hybrid electric vehicles, three-level dc-dc converter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.