Abstract:The paper presents a series of repeated static loading tests on a prestressed concrete beam, which was originally part of a real bridge and then subjected to stepwise artificial damage. The tests were done during a one-month period that four levels of damage were introduced by cutting tendons until visible cracking occurred. The deflection line was measured by means of several displacement sensors and the retrieved information is used in different ways for damage detection.At first, the sensor spacing requirement is analyzed with respect to measurement accuracy as well as necessary resolution for the numerical derivations of the deflection line to obtain the rotational angle and the curvature of the beam. These derived quantities may be used as damage indicators in addition to the deflection.Damage of concrete goes very often along with non-linear phenomena like cracking of concrete and plastic strain of reinforcement steel. These effects are discussed and their influence on the repeated loading tests as well the test procedure for condition monitoring is deployed. Progressive damage goes along with progressive sagging of the bridge due to gravity, which can also be used as damage indicator.Finally, the effect of varying outdoor temperatures are discussed and assessed. Though these effects can be reduced by choosing cloudy days without high temperature changes and without high solar irradiation, the outdoor temperature is never constant. Hence, a compensation algorithm is proposed which reflects the measured data according to a reference temperature. This compensation visibly improved the regularity of data.
The paper focuses on damage detection of civil engineering structures and especially on concrete bridges. A method for structural health monitoring based on vibrational measurements is presented and discussed. Experimentally identified modal parameters (eigenfrequencies, mode shapes and modal masses) of bridge structures are used to calculate the inverse stiffness matrix, the so-called flexibility matrix. By monitoring of the stiffness matrix, damage can easily be detected, quantified and localized by tracking changes of its individual elements. However, based on dynamic field measurements, the acquisition of the flexibility matrix instead of the stiffness matrix is often the only choice and hence more relevant for practice. But the flexibility-based quantification and localisation of damage are often possible but more difficult, as it depends on the type of support and the location of the damage. These issues are discussed and synthetized, that is an originality of this paper and is believed useful for engineers in the damage detection of different bridge structures. First the theoretical background is briefly repeated prior to the illustration of the differences between stiffness and flexibility matrix on analytical and numerical examples. Then the flexibility-based detection is demonstrated on two true bridges with real-time measurement data and the results are promising.
Abstract. Structural Health Monitoring (SHM) intends to identify damage by changes of characteristics as for instance the modal parameters. The eigenfrequencies, mode-shapes and damping-values are either directly used as damage indicators or the changes of derived parameters are analysed, such as e.g. flexibilities or updated finite element models. One common way is a continuous monitoring under environmental excitation forces, such as wind or traffic, i.e. the so-called output-only modal analysis. Alternatively, a forced measured external excitation in distinct time-intervals may be used for input-output modal analysis. Both methods are limited by the precision or the repeatability under real-life conditions at site. The paper will summarize several field tests of artificially stepby-step damaged bridges prior to their final demolishment and it will show the changes of eigenfrequencies due to induced artificial damage. Additionally, some results of a monitoring campaign of a healthy bridge in Luxembourg are presented. Reinforced concrete shows non-linear behaviour in the sense that modal parameters depend on the excitation force amplitude, i.e. higher forces lead often to lower eigenfrequencies than smaller forces. Furthermore, the temperature of real bridges is neither constant in space nor in time, while for instance the stiffness of asphalt is strongly dependant on it. Finally, ageing as such can also change a bridge's stiffness and its modal parameters, e.g. because creep and shrinkage of concrete or ageing of elastomeric bearing pads influence their modulus of elasticity. These effects cannot be considered as damage, though they influence the measurement of modal parameters and hinder damage detection.
This paper discusses the influence of environmental factors and of normal material aging on the eigenfrequencies of concrete bridges based on monitoring data registered during 4 years of a specific bridge. It is a new composite steel-concrete bridge built in 2006 in Luxembourg. The measurements are analyzed and compared to literature data. The final objective is the use of real monitored eigenfrequencies for structural health monitoring and damage detection based on identification of stiffness losses in practical applications. Therefore, it is very important to identify and compensate for outdoor influences namely temperature, excitation force level and normal aging effects, like creep and shrinkage of concrete and their impact on material properties. The present paper aims at describing these effects in order to separate them from damage effects. It is shown that temperature change rates and temperature gradients within the bridge have an influence on the eigenfrequencies. Hence the key idea for assessment from the full database is to select only measurements with small temperature differences and slow temperature change rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.