Although the lithium-metal anode has the advantages of both high gravimetric and volumetric capacities (3862 Ah kg −1 and 2085 Ah L −1 ) [13] and is already successfully used in primary batteries, it is still plagued by a series of issues that limit its successful operation in rechargeable applications, when organic solvent based electrolytes are used. [14] One of them is the nature of the lithium-metal dissolution and redeposition in the discharge and charge process together with the composition of the solid electrolyte interphase (SEI) [15,16] that is formed immediately after electrolyte addition and continues to form, grow and alter during cycling, [17] which limits the rechargeability in these battery systems and decreases their safety. [15,18,19] The SEI, though not being a homo geneous single phase, varies in composition and thickness and these differences lead to inhomogeneous and thus locally different current densities during the discharge and charge process, which can ultimately cause the formation of high surface area lithium (HSAL) during lithium deposition (charging) and hole/pit formation during dissolution (discharging). [20][21][22] In the worst case, the HSAL morphology takes the form of dendrites, i.e., small needle like lithium deposits that can grow through the separator from the anode towards the cathode. This process can lead to an internal short circuit of the cell resulting in local overheating and possibly cause a cell fire due to an increased reactivity with the electrolyte and the low melting point of lithium (180.54 °C). [23] Practical approaches to improve the rechargeable lithiummetal anode from the electrode material's point of view concentrate on either using coated lithium powder [24,25] or foil [26] and lithium with surface micropatterning. [27,28] The main underlying principle is increasing the specific surface area thus decreasing the effective current density and the resulting overpotential. However, the behavior of the lithium-metal electrode is quite complex and electrolyte-dependent [22,[29][30][31] and there is a need to identify the optimal conditions under which lithium-metal electrodes can cycle with both an increased reversibility and low overpotentials. [32] As-received lithium-metal foil contains several contaminants, [33] particularly on the surface. [34] In addition, even a new lithium foil that is considered to be smooth shows a non-negligible surface roughness that Lithium metal as an electrode material possesses a native surface film, which leads to a rough surface and this has a negative impact on the cycling behavior. A simple, fast, and reproducible technique is shown, which makes it possible to flatten and thin the native surface film of the lithium-metal anode. Atomic force microscopy and scanning electron microscopy images are presented to verify the success of the method and X-ray photoelectron spectroscopy measurements reveal that the chemical composition of the lithium surface is also changed. Furthermore, galvanostatic measurements indicate superior c...
Good quality, complementary-metal-oxide-semiconductor (CMOS) technology compatible, 200 mm graphene was obtained on Ge(001)/Si(001) wafers in this work. Chemical vapor depositions were carried out at the deposition temperatures of 885 °C using CH as carbon source on epitaxial Ge(100) layers, which were grown on Si(100), prior to the graphene synthesis. Graphene layer with the 2D/G ratio ∼3 and low D mode (i.e., low concentration of defects) was measured over the entire 200 mm wafer by Raman spectroscopy. A typical full-width-at-half-maximum value of 39 cm was extracted for the 2D mode, further indicating that graphene of good structural quality was produced. The study also revealed that the lack of interfacial oxide correlates with superior properties of graphene. In order to evaluate electrical properties of graphene, its 2 × 2 cm pieces were transferred onto SiO/Si substrates from Ge/Si wafers. The extracted sheet resistance and mobility values of transferred graphene layers were ∼1500 ± 100 Ω/sq and μ ≈ 400 ± 20 cm/V s, respectively. The transferred graphene was free of metallic contaminations or mechanical damage. On the basis of results of DFT calculations, we attribute the high structural quality of graphene grown by CVD on Ge to hydrogen-induced reduction of nucleation probability, explain the appearance of graphene-induced facets on Ge(001) as a kinetic effect caused by surface step pinning at linear graphene nuclei, and clarify the orientation of graphene domains on Ge(001) as resulting from good lattice matching between Ge(001) and graphene nucleated on such nuclei.
Investigation of the thermo-reversible properties of different poly(N-isopropyl acrylamide) samples, including microgels and block copolymers, with a combination of methods such as electron microscopy, dynamic light scattering, analytical ultracentrifugation, electrophoresis and ultrasound resonator technology allows comprehensive characterisation of the phase transition. By the combination of methods, it was possible to show that the precipitated polymer phase contains at 40°C between 40 and 50 vol.% of water. Besides free bulk water, there is also bound water that strongly adheres to the N-isopropyl acrylamide units (about 25 vol.%). Ultrasound resonator technology, which is a non-sizing characterisation method, revealed for the microgel particles two more temperatures (at about 35 and between 40°C and 50°C depending on the chemical nature) where characteristic changes in the ultrasound attenuation take place. Moreover, the experimental data suggest that the phase transition temperature is related to surface charge density of the precipitated particles.
Key Points Question Does a multimodal nonpharmacological approach prevent delirium in older patients undergoing elective surgical procedures? Findings This stepped-wedge cluster trial recruited 1470 patients 70 years and older who were randomized in 5 clusters to patient-centered evidence-based intervention (ie, personalized stimulation, company, relaxation) vs routine care. The intervention reduced delirium incidence after various major procedures, most significantly in patients undergoing noncardiac surgery; the intervention did not change cardiac surgery postoperative delirium incidence. Meaning Results of this stepped-wedge cluster trial suggest the implementation of this multimodal nonpharmacological delirium prevention program may improve delivery of targeted care and patient outcomes in older patients undergoing elective noncardiac surgical procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.