ABSTRACT:If images acquired from Unmanned Aerial Vehicles (UAVs) need to be accurately geo-referenced, the method of choice is classical aerotriangulation, since on-board sensors are usually not accurate enough for direct geo-referencing. For several different applications it has recently been proposed to mount thermal cameras on UAVs. Compared to optical images, thermal ones pose a number of challenges, in particular low resolution and weak local contrast. In this work we investigate the automatic orientation of thermal image blocks acquired from a UAV, using artificial ground control points. To that end we adapt the photogrammetric processing pipeline to thermal imagery. The pipeline achieves accuracies of about ± 1 cm in planimetry and ± 3 cm in height for the object points, respectively ± 10 cm or better for the camera positions, compared to ± 100 cm or worse for direct geo-referencing using on-board single-frequency GPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.