Salmonella Infantis is a zoonotic pathogen that causes gastroenteritis in humans and animals, with poultry being its main reservoir. In Chile, there are no data to characterize S. Infantis strains in poultry production. In this study, 87 S. Infantis strains were isolated from chicken meat for sale in supermarkets in Santiago, Chile, and characterized according to their virulence genes, biofilm formation abilities, antibiotic susceptibility, and resistance genes. Through polymerase chain reaction or PCR, the strains were analyzed to detect the presence of 11 virulence genes, 12 antibiotic resistance genes, and integrase genes. Moreover, disc diffusion susceptibility to 18 antimicrobials and the ability to form biofilm in vitro were evaluated. Results demonstrated six different virulence gene profiles. Ninety-four percent of the strains were multi-resistant to antibiotics with weak biofilm formation abilities, 63.2% of the strains were broad spectrum β- lactam resistant, and the bla CTX-M-65 gene was amplified in 13 strains. Only 3.4% of the strains were fluoroquinolone resistant, and the qnrB gene was amplified in two strains. Colistin resistance was exhibited in 28.7% of the strains, but mrc genes were not amplified in any strain under study. The isolated S. Infantis strains are pathogenic and antibiotic multi-resistant, and thus, this Salmonella serotype should be under surveillance in the poultry food production chain with the aim of protecting public health.
Antimicrobials are currently used in poultry for disease treatment. However, their excretion in bird feces may contaminate the environment. Considering this, the objective of this work was to quantify antimicrobials residues concentrations in therapeutically treated broiler chicken droppings throughout the post-treatment period. For this aim a multiresidue method using high-performance liquid chromatography-tandem mass spectrometry
(HPLC-MS/MS)
was validated. Forty-eight male broiler chickens were distributed and treated with commercial formulations of 5 different antimicrobials. Results showed that oxytetracycline and 4-epi-oxytetracycline, presented the highest concentrations during all sampling period, detecting concentrations of 1471.41 µg kg
−1
at the last sampling point (day 22 post-treatment). Florfenicol, tylosin, enrofloxacin, and ciprofloxacin were eliminated and detected in treated chicken droppings until d 18 post-treatment. Sulfachloropyridazine decrease gradually during post-treatment period until day 30. Results demonstrate that studied antimicrobials in treated chicken droppings were eliminated for prolonged periods, therefore becoming a significant route of residues dissemination into the environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.