The open-source Python package pyam provides a suite of features and methods for the analysis, validation and visualization of reference data and scenario results generated by integrated assessment models, macro-energy tools and other frameworks in the domain of energy transition, climate change mitigation and sustainable development. It bridges the gap between scenario processing and visualisation solutions that are "hard-wired" to specific modelling frameworks and generic data analysis or plotting packages. The package aims to facilitate reproducibility and reliability of scenario processing, validation and analysis by providing well-tested and documented methods for timeseries aggregation, downscaling and unit conversion. It supports various data formats, including sub-annual resolution using continuous time representation and "representative timeslices". The code base is implemented following best practices of collaborative scientific-software development. This manuscript describes the design principles of the package and the types of data which can be handled. The usefulness of pyam is illustrated by highlighting several recent applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.