In oviparous vertebrates such as the marine teleost gilthead seabream, water and fluid homeostasis associated with testicular physiology and the external activation of spermatozoa is potentially mediated by multiple aquaporins. To test this hypothesis, we isolated five novel members of the aquaporin superfamily from gilthead seabream and developed paralog-specific antibodies to localize the cellular sites of protein expression in the male reproductive tract. Together with phylogenetic classification, functional characterization of four of the newly isolated paralogs, Aqp0a, -7, -8b, and -9b, demonstrated that they were water permeable, while Aqp8b was also permeable to urea, and Aqp7 and -9b were permeable to glycerol and urea. Immunolocalization experiments indicated that up to seven paralogous aquaporins are differentially expressed in the seabream testis: Aqp0a and -9b in Sertoli and Leydig cells, respectively; Aqp1ab, -7, and -10b from spermatogonia to spermatozoa; and Aqp1aa and -8b in spermatids and sperm. In the efferent duct, only Aqp10b was found in the luminal epithelium. Ejaculated spermatozoa showed a segregated spatial distribution of five aquaporins: Aqp1aa and -7 in the entire flagellum or the head, respectively, and Aqp1ab, -8b, and -10b both in the head and the anterior tail. The combination of immunofluorescence microscopy and biochemical fractionation of spermatozoa indicated that Aqp10b and phosphorylated Aqp1ab are rapidly translocated to the head plasma membrane upon activation, whereas Aqp8b accumulates in the mitochondrion of the spermatozoa. In contrast, Aqp1aa and -7 remained unchanged. These data reveal that aquaporin expression in the teleost testis shares conserved features of the mammalian system, and they suggest that the piscine channels may play different roles in water and solute transport during spermatogenesis, sperm maturation and nutrition, and the initiation and maintenance of sperm motility.
The expression of aquaporins in the spermatozoa of the marine teleost gilthead sea bream (Sparus aurata) and their involvement in the motility activation process were investigated. Sperm motility was activated by a hyperosmotic shock, but it was completely inhibited by 10 microM HgCl(2), such inhibition being partially recovered by beta-mercaptoethanol (ME). Conventional RT-PCR using primers specific for S. aurata aquaglyceroporin (glp) and aquaporin 1a (aqp1a) demonstrated the presence of both mRNAs in spermatozoa. Heterologous expression in Xenopus laevis oocytes showed that 10 and 100 microM HgCl(2) equally inhibited water and solute transport through S. aurata aquaporin 1a and S. aurata aquaglyceroporin, but treatment with ME only recovered aquaporin 1a-mediated water permeability. Western blot analysis using isoform-specific antisera on protein extracts from spermatozoa revealed bands that corresponded to the predicted molecular mass of S. aurata aquaglyceroporin (31 kDa) and S. aurata aquaporin 1a (28 kDa). The antisera also demonstrated that both aquaporins were localized in the head and flagellum of the spermatozoa. However, the immunoreaction at the plasma membrane of the spermatozoa head was more intense after the hyperosmotic activation, suggesting the translocation of both aquaporin 1a and aquaglyceroporin into the plasma membrane after the osmotic shock. This study therefore provides the first direct demonstration for the presence of aquaporins in fish sperm. The different sensitivities of S. aurata aquaporin 1a and S. aurata aquaglyceroporin to ME may explain the failure of this reducing agent to fully recover the mercurial inhibition of sperm motility, suggesting that these aquaporins may play different physiological roles during the activation and maintenance of sperm motility in sea bream.
Molecular mechanisms involved in sperm motility initiation in two sparids (Sparus aurata and Lithognathus mormyrus) have been studied. Our comparative study demonstrates that osmolality is the key signal in sperm motility activation in both species, whereas K(+) and Ca(2+) do not have any role. The straight-line velocity that resulted, however, was significantly different when measured in sperm activated with non-ionic and/or calcium-free solutions with respect to that measured in seawater-activated sperm. In both species, motility initiation depends on cAMP-dependent protein phosphorylation. The phosphorylation/dephosphorylation patterns that resulted in gilthead and striped sea bream were quite different. In gilthead sea bream, the phosphorylated proteins have molecular weights of 174, 147, 138, 70, and 9-15 kDa, whereas the dephosphorylated proteins have molecular weights of 76, 57, and 33 kDa. In striped sea bream, phosphorylation after sperm motility activation occurred on proteins of 174, 147, 103, 96, 61, 57, and 28 kDa, whereas only one protein of 70 kDa resulted from dephosphorylation. Matrix-assisted laser desorption ionization-time of flight analyses allowed identification of the following proteins: In gilthead sea bream, the 9-15 kDa proteins that were phosphorylated after motility activation include an A-kinase anchor protein (AKAP), an acetyl-coenzyme A synthetase, and a protein phosphatase inhibitor, and in striped sea bream, 103- and 61-kDa proteins that were phosphorylated after motility activation were identified as a phosphatase (myotubularin-related protein 1) and a kinase (DYRK3), respectively.
In the present study we used two-dimensional polyacrylamide gel electrophoresis (2-DE) and matrix-associated laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to verify whether the protein expression of sea bass sperm was affected by the cryopreservation procedure. The protein profiles differed between fresh and frozen-thawed semen as revealed by visual inspection and by image analysis software. We identified 163 spots in fresh sperm; among these, 13 were significantly decreased and 8 were absent in two-dimensional gel obtained with cryopreserved sperm. Five of these spots were analyzed with MALDI-TOF, but only three showed a significant match in the databases used in bio-informatics analysis (PeptIdent, Mascot, and MS-Fit). In particular, spot 5 showed homology with a novel protein of zebrafish (similar to SKB1 of human and mouse), spot 13 showed homology with amphibian G1/S-specific cyclin E2, and spot 20 showed homology with the hypothetical protein DKFZp566A1524 of Brachidanio rerio. The present work shows that the use of the cryopreservation procedure causes the degradation of sperm proteins and among these, two could be at least partially responsible for the observed decrease in sperm motility duration and the lower hatching rate of eggs fertilized with cryopreserved sperm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.