An individual investor has to decide how to allocate his/her savings from a retirement perspective. This problem covers a long-term horizon. In this paper we consider a 40-year horizon formulating a multi-criteria multistage program with stochastic dominance constraints in an intermediate stage and in the final stage. As we are dealing with a real problem and we have formulated the model in cooperation with a commercial Italian bank, the intermediate stage corresponds to a possible withdrawal allowed by the Italian pension system. The sources of uncertainty considered are: the financial returns, the interest rate evolution, the investor's salary process and a considerable withdrawal event. We include a set of portfolio constraints according to the pension plan regulation. The objective of the model is to minimize the Average Value at Risk Deviation (AV @RD) measure and to satisfy wealth goals. Three different wealth target formulations are considered: a deterministic wealth target (i.e. a comparison between the accumulated average wealth and a fixed threshold) and two stochastic dominance relations -the first order and the second order -introducing a benchmark portfolio and then requiring the optimal portfolio to dominate the benchmark. In particular, we prove that solutions obtained under stochastic dominance constraints ensure a safer allocation while still guaranteeing good returns. Moreover, we show how the withdrawal event affects the solution in terms of allocation in each of the three frameworks. Finally, the sensitivity and convergence of the stochastic solutions and computational issues are investigated.
This paper deals with implied volatility (IV) estimation using no-arbitrage techniques. The current market practice is to obtain implied volatility of liquid options as based on Black-Scholes type (BS hereafter) models. Such volatility is subsequently used to price illiquid or even exotic options. Therefore, it follows that the BS model can be related simultaneously to the whole set of IVs as given by maturity/moneyness relation of tradable options. Then, it is possible to get IV curve or surface (a so called smirk or smile). Since the moneyness and maturity of IV often do not match the data of valuated options, some sort of estimating and local smoothing is necessary. However, it can lead to arbitrage opportunity, if no-arbitrage conditions on state price density (SPD) are ignored. In this paper, using option data on DAX index, we aim to analyse the behavior of IV and SPD with respect to different choices of bandwidth parameter h, time to maturity and kernel function. A set of bandwidths which violates no-arbitrage conditions is identified. We document that the change of h implies interesting changes in the violation interval of moneyness. We also perform the analysis after removing outliers, in order to show that not only outliers cause the violation of no-arbitrage conditions. Moreover, we propose a new measure of arbitrage which can be considered either for the SPD curve (arbitrage area measure) or for the SPD surface (arbitrage volume measure). We highlight the impact of h on the proposed measures considering the options on a German stock index. Finally, we propose an extension of the IV and SPD estimation for the case of options on a dividend-paying stock.
We address the problem of a private pension plan sponsor who has to find the best pension funds for its members. Starting from a descriptive analysis of the pension plan members we identify a set of representative subscribers. Then, the optimal allocation for each representative will become a pension fund of the pension plan. For each representative, we propose a multistage stochastic program (MSP) which includes a multi-criteria objective function. The optimal choice is the portfolio allocation that minimizes the Average Value at Risk Deviation of the final wealth and satisfies a wealth target in the final stage and other constraints regarding pension plan regulations. Stochasticity arises from the investor's salary process and from asset returns. Numerical results show the optimal dynamic portfolios with respect to the investor's preferences and then the best pension funds the sponsor might offer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.