We present a methodology for clustering N objects which are described by multivariate time series, i.e. several sequences of real-valued random variables. This clustering methodology leverages copulas which are distributions encoding the dependence structure between several random variables. To take fully into account the dependence information while clustering, we need a distance between copulas. In this work, we compare renowned distances between distributions: the Fisher-Rao geodesic distance, related divergences and optimal transport, and discuss their advantages and disadvantages. Applications of such methodology can be found in the clustering of financial assets. A tutorial, experiments and implementation for reproducible research can be found at www.datagrapple.com/Tech.
Abstract. The following working document summarizes our work on the clustering of financial time series. It was written for a workshop on information geometry and its application for image and signal processing. This workshop brought several experts in pure and applied mathematics together with applied researchers from medical imaging, radar signal processing and finance. The authors belong to the latter group. This document was written as a long introduction to further development of geometric tools in financial applications such as risk or portfolio analysis. Indeed, risk and portfolio analysis essentially rely on covariance matrices. Besides that the Gaussian assumption is known to be inaccurate, covariance matrices are difficult to estimate from empirical data. To filter noise from the empirical estimate, Mantegna proposed using hierarchical clustering. In this work, we first show that this procedure is statistically consistent. Then, we propose to use clustering with a much broader application than the filtering of empirical covariance matrices from the estimate correlation coefficients. To be able to do that, we need to obtain distances between the financial time series that incorporate all the available information in these cross-dependent random processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.