Asiatic citrus canker is a major disease worldwide, and its causal agent, Xanthomonas citri pv. citri, is listed as a quarantine organism in many countries. Analysis of the molecular epidemiology of this bacterium is hindered by a lack of molecular typing techniques suitable for surveillance and outbreak investigation. We report a comparative evaluation of three typing techniques, amplified fragment length polymorphism (AFLP) analysis, insertion sequence ligation-mediated PCR (IS-LM-PCR) typing, and multilocus variable-number tandem-repeat analysis (MLVA), with 234 strains originating from Asia, the likely center of origin of the pathogen, and reference strains of pathotypes A, A*, and A w , which differ in host range. The typing techniques were congruent in describing the diversity of this strain collection, suggesting that the evolution pattern of the bacterium may be clonal. Based on a hierarchical analysis of molecular variance, the AFLP method best described the genetic variation found among pathotypes whereas MLVA best described the variation found among individual strains from the same countries or groups of neighboring countries. IS-LM-PCR data suggested that the transposition of insertion sequences in the genome of X. citri pv. citri occurs rarely enough not to disturb the phylogenetic signal. This technique may be useful for the global surveillance of nonepidemiologically related strains. Although pathological characteristics of strains could be most often predicted from genotyping data, we report the occurrence in the Indian peninsula of strains genetically related to pathotype A* strains but with a host range similar to that of pathotype A, which makes the classification of this bacterium even more complicated.
The spread of invasive aquatic plants (i.e., aquatic weeds) requires a broader knowledge of the factors determining their settlement at the lake scale, in order to improve management practices and biomonitoring. Among hydrodynamic pressures, wave action might influence submerged vegetation distribution in shallow lakes and potentially engender modifications of plant morphological traits. We here report a field survey conducted between 2014 and 2015 in French Atlantic Lakes to assess the spatial distribution and biomass production of two rooted aquatic weeds, Egeria densa Planch. and Lagarosiphon major (Ridl.) Moss, in relation to wind-induced sediment resuspension, water depth and sedimentary features. Moreover, we explored the relation between plant morphological traits and hydrodynamic disturbance under in situ conditions. At the lake scale, E. densa and L. major formed extensive monospecific stands, and occurred in the same areas only at low biomass. Both monospecific and mixed stands preferentially developed in shallow-sheltered or deep-exposed areas. Plant morphological traits showed different patterns in function of sediment resuspension according to the species and the lake. The influence of resuspension was however not systematic, with many cases where morphological traits were not affected at all. Maximum stem length appeared to be the most correlated trait towards sediment resuspension. Moreover, we found a significant correlation between the biomass and the sedimentary organic matter, indicating an interaction between the organic substrate preference of the plants and the effect of the canopy on fine particles sedimentation. On the whole, we highlighted the link between plant distribution, phenotypic plasticity and sediment resuspension, with calm-water zones favouring the settlement of dense vegetated stands. Our study could thus contribute to improve prediction models for identifying suitable areas for potential colonization by aquatic weeds. Further research is needed to better understand the role played by hydraulic forces in structuring the habitats in shallow lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.