The fatigue crack propagation behaviour of a new third generation Al-Cu-Li alloy type 2050-T84 developed for aeronautical applications is studied in comparison to a new generation Al-Cu-Mg alloy type 2022-T851. The alloy resistance against crack growth is shown to depend on alloy composition, aging condition and atmosphere environment. The crack path and the growth rate at moderate DK and in the near-threshold domain are discussed in terms of the slip morphology with respect to the microstructure. The different crack propagation regimes, as identified by mean of micro-fractographic observations and EBSD analysis are discussed on the basis of a modelling framework elaborated for conventional metallic alloys.
Extending the fused filament fabrication process to highly filled thermoplastics in metallic powder used in metal injection molding is a promising method to produce small series. However, the lack of adhesion between deposited filaments can cause ruptures during the fabrication or debinding process. We designed a simple device to measure the shear strength required to tear off a filament deposited on a substrate. This device makes it possible to quickly determine the processing window for a good welding of filaments. We developed a 2D thermal simulation using the finite difference method while integrating the enthalpy of fusion and crystallization kinetics of the material. We then fitted it to the thermal measurements at depths of 0.45 and 0.75 mm under the substrate surface using small‐diameter thermocouples. Simulation results highlight the key role of the thermal contact resistance between the filament and the substrate in the evolution of the interface temperature. This provides essential information to explain the process window that can be determined experimentally. The characteristic time of macromolecule diffusion was determined by rheological measurements and was found to be too small to play a role in filament bonding for the simulated cooling rates for the studied material. The methodology introduced in this work was used to improve highly filled polymers interlayer adhesion, but it can be used to improve other filled or unfilled polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.