Bedload transport drives morphological changes in gravel-bed streams and sediment transfer in catchments. The large impact forces associated with bedload motion and its highly dynamic spatiotemporal nature make it difficult to monitor bedload transport in the field. In this study, we revise a physically-based model of bedload-induced seismic ground motion proposed by Tsai et al. (2012, htpps://doi.org/10.1029/2011GL050255) and apply it to invert bedload flux from seismic measurements alongside an Alpine stream. First, we constrain the seismic response of a braided river reach with a simple active experiment using a series of large-rock impacts. This allows the characterization of surface wave propagation and attenuation with distance from the impact source. Second, we distinguish bedload-generated ground vibrations from those caused by turbulent flow using frequency-based scaling relationships between seismic power and discharge. Finally, absolute bedload transport rates are quantified from seismic measurements using inverse modeling based on a simplified formulation of bedload particle motion. The results are verified with a large data set of bedload samples, demonstrating that seismic measurements can provide an indirect measure for bedload flux with uncertainties within a factor of 5 ±1 for instantaneous measurements (between 0.01 and 1 kg/m/s). Larger deviations may be caused by uncertainties in the contribution of turbulent flow effects, particle impact velocity, and especially particle size that may vary with sediment supply and flow conditions. When constraining these uncertainties, instream sediment transport measurements are no longer necessarily required and seismic monitoring may provide an accurate and continuous means to investigate bedload dynamics in gravel-bed streams.
Abstract. This research has been conducted to develop the use of passive acoustic monitoring (PAM) in rivers, a surrogate method for bedload monitoring. PAM consists in measuring the underwater noise naturally generated by bedload particles when impacting the river bed. Monitored bedload acoustic signals depend on bedload characteristics (e.g., grain size distribution, fluxes) but are also affected by the environment in which the acoustic waves are propagated. This study focuses on the determination of propagation effects in rivers. An experimental approach has been conducted in several streams to estimate acoustic propagation laws in field conditions. It is found that acoustic waves are differently propagated according to their frequency. As reported in other studies, acoustic waves are affected by the existence of a cutoff frequency in the kilohertz region. This cutoff frequency is inversely proportional to the water depth: larger water depth enables a better propagation of the acoustic waves at low frequency. Above the cutoff frequency, attenuation coefficients are found to increase linearly with frequency. The power of bedload sounds is more attenuated at higher frequencies than at low frequencies, which means that, above the cutoff frequency, sounds of big particles are better propagated than sounds of small particles. Finally, it is observed that attenuation coefficients are variable within 2 orders of magnitude from one river to another. Attenuation coefficients are compared to several characteristics of the river (e.g., bed slope, surface grain size). It is found that acoustic waves are better propagated in rivers characterized by smaller bed slopes. Bed roughness and the presence of air bubbles in the water column are suspected to constrain the attenuation of acoustic wave in rivers.
Abstract. Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.
Bedload transport is recognized as a key process in the development of river channel forms; however, most rivers suffer from an absence of data. Performing bedload measurements to document bedload transport rates is a challenge, as the deployment of traditional bedload samplers is time consuming and risky in floods. Consequently, bedload measurements are rarely executed. Alternative techniques are being developed to complement the use of traditional bedload measurements and to provide continuous monitoring. Passive acoustic measurements are made with hydrophones, measuring the underwater sounds naturally generated by bedload impacts in rivers. This paper proposes an innovative deployment of hydrophones to record bedload sounds at the scale of a cross section. The measured acoustic signals are interpreted with bedload samplings and with hydraulic and river bed parameters. Field experiments were done in 14 different sites, exploring a diversity of rivers. Bedload flux was observed to be the most consistent variable explaining the monitored acoustic power. Based on 25 experiments on 14 rivers, the cross‐section‐averaged acoustic power was related to the specific bedload flux and showed a good agreement (60% of bedload flux estimated within a factor of 2). The robustness of the obtained calibration curve remains to be tested. However, the potential of passive acoustic profiles to provide a continuous measurement of bedload sounds that could be used in the development of bedload gauging stations is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.