Recent studies show that humans engage in multitasking behaviors as they seek and search information retrieval (IR) systems for information on more than one topic at the same time. For example, a Web search session by a single user may consist of searching on single topics or multitasking. Findings are presented from four separate studies of the prevalence of multitasking information seeking and searching by Web, IR system, and library users. Incidence of multitasking identified in the four different studies included: (1) users of the Excite Web search engine who completed a survey form, (2) Excite Web search engine users filtered from an Excite transaction log from 20 December 1999, (3) mediated on-line databases searches, and (4) academic library users. Findings include: (1) multitasking information seeking and searching is a common human behavior, (2) users may conduct information seeking and searching on related or unrelated topics, (3) Web or IR multitasking search sessions are longer than single topic sessions, (4) mean number of topics per Web search ranged of 1 to more than 10 topics with a mean of 2.11 topic changes per search session, and (4) many Web search topic changes were from hobbies to shopping and vice versa. A more complex model of human seeking and searching levels that incorporates multitasking information behaviors is presented, and a theoretical framework for human information coordinating behavior (HICB) is proposed. Multitasking information seeking and searching is developing as major research area that draws together IR and information seeking studies toward a focus on IR within the context of human information behavior. Implications for models of information seeking and searching, IR/Web systems design, and further research are discussed.
This paper reports findings from an analysis of medical or health queries to different web search engines. We report results: (i). comparing samples of 10000 web queries taken randomly from 1.2 million query logs from the AlltheWeb.com and Excite.com commercial web search engines in 2001 for medical or health queries, (ii). comparing the 2001 findings from Excite and AlltheWeb.com users with results from a previous analysis of medical and health related queries from the Excite Web search engine for 1997 and 1999, and (iii). medical or health advice-seeking queries beginning with the word 'should'. Findings suggest: (i). a small percentage of web queries are medical or health related, (ii). the top five categories of medical or health queries were: general health, weight issues, reproductive health and puberty, pregnancy/obstetrics, and human relationships, and (iii). over time, the medical and health queries may have declined as a proportion of all web queries, as the use of specialized medical/health websites and e-commerce-related queries has increased. Findings provide insights into medical and health-related web querying and suggests some implications for the use of the general web search engines when seeking medical/health information.
As the Web is becoming a worldwide phenomenon we need to understand what searching trends are emerging across different global regions. Are there regional differences in Web searching? What are the differences between searching by the United States population compared to Europeans? As part of a body of research studying these questions, we have analyzed two data sets culled from more than one million queries submitted by more than 200,000 users of the Excite Web search engine collected in May 2001 and the FAST Web search engine (All theWeb.com), collected in February 2001.We compare the searching behavior of largely European FAST Web search engine users (mostly German) with Excite Web search engine users who are largely U.S. This comparative study shows differences in Web searching by U.S. and European users. Specifically, the results suggest some differences in the topics searched and searching behaviors.
The analysis of contextual information in search engine query logs is an important, yet difficult task. Users submit few queries, and search multiple topics sometimes with closely related context. Identification of topic changes within a search session is an important branch of contextual information analysis. The purpose of this study is to propose a topic identification algorithm using neural networks. A sample from the Excite data log i s selected to train the neural network and then the neural network is used to identify topic changes in the data log. As a result, 76% of topic shifts and 92% of topic continuations are identified correctly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.