The results of this study further emphasize the importance and necessity of educating this at-risk population by planning direct, in-person training, which is an essential step in improving attitudes and preventative practices toward CL and in controlling CL in endemic areas.
Background:Treatment of cutaneous leishmaniasis (CL) is occasionally highly resistant to pentavalent antimonials, the gold standard in pharmacotherapy of CL. Since there is no effective vaccine, the discovery of natural antileishmanial products as complementary therapeutic agents could be used to improve the current regimens.Objective:In this study in vitro and in vivo antileishmanial activities of osthole, a natural coumarin known to possess antibacterial and parasiticidal activities are evaluated.Materials and Methods:Leishmania major infected J774.A1 macrophages were treated with increasing concentrations of osthole. CL lesions of BALB/c mice were treated topically with 0.2% osthole.Results:Osthole exhibited dose-dependent leishmanicidal activity against intracellular amastigotes with IC50 value of 14.95 μg/ml. Treatment of CL lesions in BALB/c mice with osthole significantly declined lesion progression compared to untreated mice (P < 0.05), however did not result in recovery.Conclusion:Osthole demonstrated remarkable leishmanicidal activity in vitro. Higher concentrations of osthole may demonstrate the therapeutic property in vivo.SUMMARY
In vitro and in vivo antileishmanial activities of osthole, a pernylated coumarin extracted from Prangos asperula Boiss., are studied against Leishmania major.
Background:Today, leishmaniasis is a widespread, infectious parasitic disease caused by Leishmania spp. Natural-derived compounds are likely to provide a valuable source of new pharmaceuticals, and among them, quercetin derivatives may have antileishmanial effects. The antileishmanial activity of 3,5,7,3’,4’-pentahydroxyflavonol (quercetin) derivatives is partly attributed to the position and pKa of phenolic or catechol hydroxyl groups. Therefore, to optimize their leishmanicidal effect, the structural features of quercetin and its derivatives were improved by acylation or alkylation of hydroxyl groups and changing their pKa and consequently their activities.Materials and Methods:In this study, during a regioselective method, quercetin derivatives were synthesized. The structures of synthesized compounds were confirmed by mass, IR, 1H-, and 13C-NMR spectral data. The antileishmanial activities of compounds 1–6 were compared with glucantime as the standard drug against promastigotes of Leishmania major using standard cell-based leishmanicidal assay.Results:In this study, during a regioselective method, two 7-O-quercetin derivatives (5 and 6), and three quercetin acetate derivatives (2, 3, and 4) were synthesized. In detail, the IC50 values found against L. major were (1) 2.5 ± 0.92; (2) 2.85 ± 0.99; (3) 15.5 ± 1.95; (4) 13.5 ± 3.5; (5) 2.6 ± 0.57; and (6) 1.3 ± 0.35 μM while IC50 value of glucantime as the standard drug was 88.5 ± 9.47 μM.Conclusions:The present study showed an effective antileishmanial activity of quercetin semisynthetic compounds (1–6) against in vitro promastigotes of L. major. Among them, quercetin analogs with more lipophilic and iron-chelating activity showed more antiparasite activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.