In this work, we design and simulate a new class AB second generation current conveyor (CCII) employing 32 nm technology node carbon nanotube field effect transistors (CNTFET). The performance of the proposed CNTFET based class AB CCII (CNTFET-CCII) has been optimized by altering the number of carbon nanotubes (CNTs) (N), CNT pitch (S), and CNT diameter (D CNT). The proposed CCII has been compared with the conventional CMOS-based class AB CCII (CMOS-CCII). The simulation study has revealed that in the proposed CCII, the voltage and current bandwidth (BW) have enhanced by two orders, terminal X resistance
In this work, we design and simulate novel 32 nm carbon nanotube field effect transistor (CNTFET) as well as complementary metal oxide semiconductor (CMOS)‐based negative class AB second generation current conveyors (CC) (CNTFET‐CCII and CMOS‐CCII−). The comparative analyses of various performance measuring parameters of both these CCII's have been performed. A significant improvement in current and voltage bandwidths, terminal X and Y impedances at lesser total harmonic distortions and reduced power consumption have been observed in the proposed CNTFET‐based CCII− in comparison to its CMOS‐based counterpart. Further, a CNTFET‐based active grounded inductor (AGI) has been designed and simulated for the first time using the proposed CNTFET‐CCII− and our recently designed CNTFET‐CCII+ and has been compared with the CMOS‐based AGI. To validate the performance of the simulated AGI's, single input multi output current mode filter and third‐order high pass Butterworth filter have also been designed and simulated. The simulation results reveal that the performance of the CNTFET‐AGI‐based applications are close to ideal response with less power consumption and temperature insensitivity with reduced active chip die area of 0.16 μm2 and can be efficiently used for low voltage, low power, and high frequency applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.