Fanconi anemia (FA) is a rare autosomal recessive genetic disease, associated with congenital anomalies and a predisposition to cancers. FA patients exhibit spontaneous chromosome breakage and FA cells are sensitive to DNA interstrand crosslink agents and expresses high frequency of chromosome breakage. Recently 13 genes have been shown to be involved with the FA phenotype. We have carried out a detailed study in clinically diagnosed FA patients in an Indian population. Thirty three patients were clinically diagnosed with FA and had aplastic anemia and bleeding abnormalities. The genetic analysis revealed a significantly (P<0.0001) high frequency (36.4%) of parental consanguinity in FA patients compared to controls (3.33%). Chromosomal analysis revealed spontaneous chromosome breakage in 63.64% FA patients. The mitomycin C and diepoxybutane induced cultures showed a significantly (P<0.001) high frequency of chromosome breakage and radial formation compared to controls. Among 33 patients, nine (27.27%) patients developed malignancies and chromosomal abnormalities were detected in five (55.5%) patients bone marrow cells including monosomy 5 and 7, trisomy 10, der(1q) and inv(7). Cytogenetic investigation is important in aplastic anemia to rule out FA. The clinical presentation and the associated high frequency of consanguinity in FA, and the molecular analysis are complementary in the study of an Indian population.
Myelodysplastic syndromes (MDSs) are heterogeneous hematopoietic disease characterized by ineffective haematopoiesis that frequently transforms into acute leukaemia. Alterations in many individual biologic pathways have been reported in MDS pathophysiology. Disease progression along the MDS, acute myeloid leukemia (AML) continuum is believed to be a consequence of stepwise accumulation of DNA mutations which infers a defect in DNA repair. The present study investigated the association between DNA repair genes (XRCC1, XRCC3, OGG1, XPD and RAD51) and the risk of developing MDS. The study was carried out in 92 primary MDS patients. The genotyping study was carried out by PCR-RFLP technique. We have studied seven single-nucleotide polymorphisms (SNPs) of five DNA repair genes (XRCC1 (Arg194Trp, Arg280His, Arg399Gln), XRCC3, XPD, RAD51 and OGG1). Significantly, a high frequency of DNA repair gene XRCC1 (Arg280His) (p=0.05) and XPD (Lys751Gln) (p=0.01) polymorphism was observed in MDS patients compared to controls. The distribution of polymorphisms in MDS subgroups showed a significant association of XRCC1 with RAEB I compared to other subgroup. Though a high frequency of XRCC1 gene polymorphism was observed in farmers and tobacco chewers, it was not statistically significant. Our study suggests that XRCC1 (Arg280His) and XPD polymorphisms are associated with risk of MDS and XRCC1 polymorphism strongly associated with advanced MDS subgroup. Hence, these polymorphisms can be used as a prognostic marker in MDS.
Partial trisomy 9 (9pter->9q22.1) and partial monosomy 14 (14pter->14q11.2) due to paternal translocation t(9;14)(q22.1;q11.2) in a case of Dysmorphic features
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.