Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies improve, the number of people affected with cataracts is predicted to increase worldwide, especially in low-income nations with limited access to surgery. Although cataract surgery is considered safe, it is associated with some complications such as retinal detachment, warranting a search for cheap, pharmacological alternatives to the management of this ocular disease. The lens is richly endowed with a complex system of non-enzymatic and enzymatic antioxidants which scavenge reactive oxygen species to preserve lens proteins. Depletion and/or failure in this primary antioxidant defense system contributes to the damage observed in lenticular molecules and their repair mechanisms, ultimately causing cataracts. Several attempts have been made to counteract experimentally induced cataract using in vitro, ex vivo, and in vivo techniques. The majority of the anti-cataract compounds tested, including plant extracts and naturally-occurring compounds, lies in their antioxidant and/or free radical scavenging and/or anti-inflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
Excitotoxicity occurs in neurons due to the accumulation of excitatory amino acids such as glutamate in the synaptic and extrasynaptic locations. In the retina, excessive glutamate concentrations trigger a neurotoxic cascade involving several mechanisms, including the elevation of intracellular calcium (Ca and the activation of α-amino-3-hydroxy 5-methyl-4-iso-xazole-propionic acid/kainate (AMPA/KA) and N-methyl-d-aspartate (NMDA) receptors leading to retinal degeneration. Both ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs) are present in the mammalian retina. Indeed, due to the abundant expression of GluRs, the mammalian retina is highly susceptible to excitotoxic neurodegeneration. Excitotoxicity has been postulated to present a common downstream mechanism for several stimuli, including hypoglycemia, hypoxia, ischemia, and chronic neurodegenerative diseases. Experimental approaches to the study of neuroprotection in the retina have utilized insults that trigger hypoxia, hypoglycemia, or excitotoxicity. Using these experimental approaches, the neuroprotective potential of GluR agents, including the NMDA receptor modulators (MK801, ifenprodil, memantine); AMPA/KA receptor antagonist (CNQX); Group II and III mGluR agonists (LY354740, quisqualate); and Ca-channel blockers (diltiazem, lomerizine, verapamil, ω-conotoxin), and others (pituitary adenylate cyclase activating polypeptide, neuropeptide Y, acetylcholine receptor agonists) have been elucidated. In addition to corroborating the exocytotic role of excitatory amino acids in retinal degeneration, these studies affirm that multiple mechanism/s contribute to the prevention of damage caused by excitotoxicity in the retina. Therefore, it is feasible that several pathways are involved in protecting the retina from toxic insults in ocular neurodegenerative conditions such as glaucoma and retinal ischemia. Furthermore, these experimental models are viable tools for evaluating therapeutic candidates in ocular neuropathies.
Hydrogen sulfide (HS) is a gaseous transmitter with well-known biological actions in a wide variety of tissues and organs. The potential involvement of this gas in physiological and pathological processes in the eye has led to several in vitro, ex vivo, and in vivo studies to understand its pharmacological role in some mammalian species. Evidence from literature demonstrates that 4 enzymes responsible for the biosynthesis of this gas (cystathionine β-synthase, CBS; cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3MST; and d-amino acid oxidase) are present in the cornea, iris, ciliary body, lens, and retina. Studies of the pharmacological actions of HS (using several compounds as fast- and slow-releasing gas donors) on anterior uveal tissues reveal an effect on sympathetic neurotransmission and the ability of the gas to relax precontracted iris and ocular vascular smooth muscles, responses that were blocked by inhibitors of CSE, CBS, and K channels. In the retina, there is evidence that HS can inhibit excitatory amino acid neurotransmission and can also protect this tissue from a wide variety of insults. Furthermore, exogenous application of HS-releasing compounds was reported to increase aqueous humor outflow facility in an ex vivo model of the porcine ocular anterior segment and lowered intraocular pressure (IOP) in both normotensive and glaucomatous rabbits. Taken together, the finding that HS-releasing compounds can lower IOP and can serve a neuroprotective role in the retina suggests that HS prodrugs could be used as tools or therapeutic agents in diseases such as glaucoma.
Cataracts, one of the leading causes of preventable blindness worldwide, refers to lens degradation that is characterized by clouding, with consequent blurry vision. As life expectancies www.videleaf.com antioxidant and/or free radical scavenging and/or antiinflammatory propensity. In addition to providing an overview of the pathophysiology of cataracts, this review focuses on the role of various categories of natural and synthetic compounds on experimentally-induced cataracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.