Plasmodium sporozoites are the infective forms of malaria parasite to vertebrate host and undergo dramatic changes in their transcriptional repertoire during maturation in mosquito salivary glands. We report here the role of a novel and conserved Plasmodium berghei protein encoded by PBANKA_091090 in maturation of Exo-erythrocytic Forms (EEFs) and designate it as Sporozoite surface Protein Essential for Liver stage Development (PbSPELD). PBANKA_091090 was previously annotated as PB402615.00.0 and its transcript was recovered at maximal frequency in the Serial Analysis of the Gene Expression (SAGE) of Plasmodium berghei salivary gland sporozoites. An orthologue of this transcript was independently identified in Plasmodium vivax sporozoite microarrays and was designated as Sporozoite Conserved Orthologous Transcript-2 (scot-2). Functional characterization through reverse genetics revealed that PbSPELD is essential for Plasmodium liver stage maturation. mCherry transgenic of PbSPELD localized the protein to plasma membrane of sporozoites and early EEFs. Global microarray analysis of pbspeld ko revealed EEF attenuation being associated with down regulation of genes central to general transcription, cell cycle, proteosome and cadherin signaling. pbspeld mutant EEFs induced pre-erythrocytic immunity with 50% protective efficacy. Our studies have implications for attenuating the human Plasmodium liver stages by targeting SPELD locus.
SUMOylation is a reversible post translational modification of proteins that regulates protein stabilization, nucleocytoplasmic transport, and protein-protein interactions. Several viruses and bacteria modulate host SUMOylation machinery for efficient infection. Plasmodium sporozoites are infective forms of malaria parasite that invade mammalian hepatocytes and transforms into exoerythrocytic forms (EEFs). Here, we show that during EEF development, the distribution of SUMOylated proteins in host cell nuclei was significantly reduced and expression of the SUMOylation enzymes was downregulated. Plasmodium EEFs destabilized the host cytoplasmic protein SMAD4 by inhibiting its SUMOylation. SUMO1 overexpression was detrimental to EEF growth, and insufficiency of the only conjugating enzyme Ubc9/E2 promoted EEF growth. The expression of genes involved in suppression of host cell defense pathways during infection was reversed during SUMO1 overexpression, as revealed by transcriptomic analysis. The inhibition of host cell SUMOylation was also observed during Toxoplasma infection. We provide a hitherto unknown mechanism of regulating host gene expression by Apicomplexan parasites through altering host SUMOylation.
Plasmodium falciparum circumsporozoite protein (CSP) is a critically required abundant surface protein of sporozoites and a major vaccine candidate. However, neither the structure nor the role of CSP in sporozoite motility is well understood. Our recent in vitro data, from single molecule pulling experiments suggested a mechanically pliable structure for P. falciparum CSP. By engineering vegetative cells of the cellular slime mold Dictyostelium discoideum with regulatable CSP surface expression, we report evidence for direct involvement of CSP towards conferring elastic properties and motility of the cells. With an increase in the surface CSP levels by 5to8 fold, the Youngs moduli of the cells, observed through atomic force microscopy, decreased around 2 fold, with a concomitant increase in motility by about 2 fold. Interestingly, only full length CSP expression conferred maximal flexibility and motility, as opposed to repeat region alone or the flanking domains of CSP. The enhanced motility of the CSP expressing cells was abrogated with anti CSP antibodies as well as phospholipase cleavage of CSP, indicating specific contribution of CSP towards motility. Measurements of the Youngs moduli of Plasmodium berghei midgut (MG) and salivary gland (SG) sporozoites revealed an inverse correlation with CSP levels with a decrease from 1.1 kPa to 0.3 kPa as the CSP concentration doubled from MG to SG sporozoites. We hypothesize that high CSP level lowers the stiffness of sporozoites possibly through its pliable surface-coat, leading to cellular flexibility. These findings may explain a sporozoites developmental ability to enhance its CSP levels during transition from midgut to salivary glands to suit a migratory mode in the host, needed for successful hepatocyte invasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.