Topological photonics have provided new insights for the manipulation of light. Analogous to electrons in topological insulators, photons travelling through the surface of a topological photonic structure or the interface of two photonic structures with different topological phases are free from backscattering caused by structural imperfections or disorder. This exotic nature of the topological edge state (TES) is truly beneficial for nanophotonic devices that suffer from structural irregularities generated during device fabrication. Although various topological states and device concepts have been demonstrated in photonic systems, lasers based on a topological photonic crystal (PhC) cavity array with a wavelength-scale modal volume have not been explored. We investigated TESs in a PhC nanocavity array in the Su–Schrieffer–Heeger model. Upon optical excitation, the topological PhC cavity array realised using an InP-based multiple-quantum-well epilayer spontaneously exhibits lasing peaks at the topological edge and bulk states. TES characteristics, including the modal robustness caused by immunity to scattering, are confirmed from the emission spectra and near-field imaging and by theoretical simulations and calculations.
We study the nonlinear optical properties of graphene integrated onto Si3N4 waveguides under picosecond and subpicosecond pulsed excitation at telecom wavelength. Saturable absorption of graphene under guided-mode excitation is measured, and the temporal effects related to the photoexcited carrier dynamics in graphene are highlighted. Thereafter, a model of photoexcited carriers in graphene is implemented into the nonlinear Schrödinger equation in order to simulate the pulse propagation across the hybrid graphene/Si3N4 waveguide. This allows us to extract phenomenological parameters of graphene saturable absorption in chip-based devices, which could provide some guidelines for the design of nonlinear elements in photonic integrated circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.