The research aiming to explore the iron ore deposits in the Nusawungu coastal Regency of Cilacap has been conducted using the magnetic survey. The acquisition of magnetic data was conducted in April – Mei 2017, covering the area in the ranges of 109.314° – 109.345°E and 7.691° – 7.709°S. The obtained magnetic field strength data were corrected, reduced, and mapped to obtain the contour map of local magnetic anomaly. The modeling process was carried out along the path extending over the map from the positions of 109.314°E and 7.695°S to 109.335°E and 7.699°S, so that some subsurface anomalous objects are obtained. The lithological interpretation was performed to identify the types of subsurface rocks and their formations based on the magnetic susceptibility value of each anomalous objects and supported by the geological information of the research area. Based on the interpretation results, three rocks deposits of alluvium formations were obtained, which are estimated to contain iron ore. The first deposit has a length of 164.85 m, a depth of 0.57 – 8.43 m, and a magnetic susceptibility value of 0.0097 cgs. The second deposit has a length of 376.28 m, a depth of 2.56 – 19.66 m, and a magnetic susceptibility value of 0.0108 cgs. The third deposit has a length of 1,306.26 m, a depth of 3.70 – 58.69 m, and a magnetic susceptibility value of 0.0235 cgs. Out of the whole rocks deposits, the third rock deposit is interpreted to have the most prospective iron ore. This interpretation based on its high magnetic susceptibility value, which indicates the presence of many magnetic minerals (i.e. iron ores) in the rock.
The Estimation of coal bituminous depth in Village of Banjaran, District of Salem, Regency of Brebes based on magnetic anomaly data has been done. The Village of Banjaran is located in the geology basin which called as Bentarsari Basin. The activities stages that carried out in this research include of magnetic data acquisition in the field, data processing, and interpretation. The interpretation of the anomalies data is done through the modeling using the Mag2DC for Window software on the local magnetic anomalies data. Based on this modeling results, then obtained six anomalous objects that can be interpreted as the subsurface rocks in the research area, which consists of sediments of gravel, sand, clay, and silt ( = 0.0020 cgs units); tuff and tuffaceous sandstone ( = 0.0069cgs units); andesite breccia, tuff, and tuffaceous sandstone ( = 0.0085cgs units); solid andesite breccia which not layered ( = 0.0115 cgs units); coarse sandstones, limestones, and sandy marl ( = 0.0109cgs units); andesite sandstone that layered with claystone and thin insertions of new coal bituminous alternately ( = 0.0008cgs units). Based on the modeling results and the geological information of this research area, it can be estimated that the coal bituminous found in the Kaliglagah formation, with its depths ranging between 104.48 m -505.97m, and the value of the magnetic susceptibility is 0.0008 cgs units.
The Eastern Coastal of Nusawungu District is a series of areas in the Eastern part of the Cilacap Regency Coastal which allegedly still contains iron ore. The magnetic and geoelectric surveys have been conducted in April up to October 2017 to determine the distribution of iron sand in this area. Magnetic survey has been done in the research area at position of 109.34619°-109.37183°E and 7.69581°-7.70978°S. The results that obtained from the magnetic survey are local magnetic anomaly contour map, with anomalies values ranging of-498.66-201,73 nT. Based on the contour map that obtained, there are several magnetic anomalous closures with 7.73° strike that indicate the presence of iron sand deposits in its subsurface. The geoelectric survey has been carried out in the zone which indicated to contain iron sand to estimate its potential. Based on the results of modeling, several log resistivities have been obtained which show the existence of 4-5 lithologic layers. At each the sounding point, there is a layer which is interpreted as sand containing iron ore grains which alternating with silt and clay. This iron sand deposits are distributed at the sounding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.