The pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae) poses a serious threat to pine forests in Europe and East Asia, leading to a debilitating pine wilt disease. Infected pine trees in Korea are generally fumigated or crushed to small wood chips after felling. Although pine wilt disease often recurs in pest management sites, there are no adequate means to monitor the effectiveness of pest control measures in those sites. Recently, a male-produced aggregation pheromone, 2-(undecyloxy)ethanol, was shown to be useful for attracting several Monochamus species, which are vectors for the pinewood nematodes. In this study, we investigated the abilities of 2-(undecyloxy)ethanol at three different doses (175, 350, and 700 mg), as well as host plant volatiles (α-pinene and ethanol), to attract M. alternatus (Coleoptera: Cerambycidae) at a pine forest in Pohang, Korea where infected pine trees had been cut down and fumigated. Twenty-seven M. alternatus were captured in cross-vane panel traps made of polyethylene terephthalate bottles and acrylic sheets. The results indicate that a high dose of 2-(undecyloxy)ethanol (700 mg per trap) is the most effective for attracting M. alternatus. The aggregation pheromone could be used to monitor the effectiveness of pest control measures as well as M. alternatus populations.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.
The aggregation pheromone of Monochamus (Coleoptera: Cerambycidae) beetles, 2‐(undecyloxy) ethanol (hereafter referred to as monochamol), has gained considerable attention because of its usefulness in monitoring and population control of pine sawyer beetles. The hydroxyether structural motif is conserved in pheromones of the subfamily Lamiinae of the Cerambycidae. In this study, we investigated the effects of C10‐ and C12‐chain length alkyl analogs of monochamol, 2‐(decyloxy) ethanol and 2‐(dodecyloxy) ethanol, on attracting M. saltuairus in Andong, Gyeongsangbuk‐do, Korea. The C10 and C12 analogs attracted M. saltuarius when used in combination with α‐pinene and ethanol, but the responses of these alkyl chain analogs were lower than those of monochamol. Furthermore, the addition of either C10 or C12 analog to the use of monochamol with α‐pinene and ethanol had no effect on attraction of M. saltuarius, indicating high sensitivity of M. saltuarius to monochanol. Taken together, the results of this study suggest that chemical communication within a Monochamus species depends not only on monochamol, but also on other semiochemicals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.