Adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) play an important role during the early stages of atherogenesis. Agastache rugosa has an anti-atherogenic effect in low density lipoprotein receptor 3 3/3 3 mice. Moreover, A. rugosa reduced macrophage infiltration and VCAM-1 expression has been localized in aortic endothelium that overlies early foam cell lesions. This study ascertained that tilianin (100 W WM), a major component of A. rugosa, inhibits the tumor necrotic factor-K K (TNF-K K)-induced expression of VCAM-1 by 74% in cultured human umbilical vein endothelial cells (HUVECs). Also, tilianin (100 W WM) reduced TNF-K K-induced activation of nuclear factor-U UB in HUVECs. ß
Mitogen-activated protein kinases play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 and 16.5 nM by competing with adenosine triphosphate in an active pocket. Further, we demonstrated that magnolin inhibited epidermal growth factor (EGF)-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of Ras(G12V)-harboring A549 human lung cancer cells and NIH3T3 cells stably expressing Ras(G12V) in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.
The anticomplementary activity of compounds isolated from the heartwood of Caesalpinia sappan L. (Leguminosae) was investigated. The sterol mixture (campesterol 11.2%, stigmasterol 18.9% and beta-sitosterol 69.9%) was most potent and brazilin, brazilein, and protosappanin E showed a new anticomplementary activity on the complement system in vitro.
The anticomplementary properties of kaikasaponin III (4) and soyasaponin I (8) from Pueraria lobata and their hydrolytic analogs were investigated in vitro. Diglycosidic saponins [kaikasaponin I (3), soyasaponin III (7)] showed most potent anticomplementary activities, followed by monoglycosidic saponins [soyasapogenol B monoglucuronide (6), sophoradiol monoglucuronide (2)] and triglycosidic saponins [soyasaponin I (8), kaikasaponin III (4)], whereas sophoradiol (1) and soyasapogenol B (5) showed enhancement of hemolysis under the presence of serum on the classical pathway of complement system. But all of them showed very weak or no anticomplementary activities on the alternative pathway of complement system. The anticomplementary activity of the saponins was influenced by the nature of glucuronic acid, where the free acid forms (-COOH) showed much more potent activity than the sodium salt forms (-COO-Na+) or methyl ester forms (-COOCH3), and the reduced forms (-CH2OH) decreased the activity significantly.
As part of the search for anticomplementary active components from natural products, the anticomplementary properties of methanolic extracts from the flower buds of Magnoliafargesii have been investigated. Bioassay-guided chromatographic separation of the active constituents led to the isolation of compound 1, whose structure was identified by spectroscopic methods to be kaempferol 3-O-beta-D-(6"-O-coumaroyl)glucopyranoside (tiliroside). Tiliroside showed very potent anti-complement activity (IC50=5.4 x 10(-5) M) on the classical pathway of the complement system, even higher than rosmarinic acid, which is a well-known inhibitor against the complement system. On the other hand, the hydrolysates of tiliroside, kaempferol, astragalin and p-coumaric acid showed very weak activity on this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.