a b s t r a c tEngine downsizing is a proven method for CO 2 reduction in Internal Combustion Engine (ICE). A turbocharger, which reclaims the energy from the exhaust gas to boost the intake air, can effectively improve the power density of the engine thus is one of the key enablers to achieve the engine downsizing. Acknowledging its importance, many research efforts have gone into improving a turbocharger performance, which includes turbine volute. The cross-section design of a turbine volute in a turbocharger is usually a compromise between the engine level packaging and desired performance. Thus, it is beneficial to evaluate the effects of cross-sectional shape on a turbine performance. This paper presents experimental and computational investigation of the influence of volute cross-sectional shape on the performance of a radial turbocharger turbine under pulsating conditions. The cross-sectional shape of the baseline volute (denoted as Volute B) was optimized (Volute A) while the annulus distribution of area-to-radius ratio (A/R) for the two volute configurations are kept the same. Experimental results show that the turbine with the optimized volute A has better cycle averaged efficiency under pulsating flow conditions, for different loadings and frequencies. The advantage of performance is influenced by the operational conditions. After the experiment, a validated unsteady computational fluid dynamics (CFD) modeling was employed to investigate the mechanism by which performance differs between the baseline volute and the optimized version. Computational results show a stronger flow distortion in spanwise direction at the rotor inlet with the baseline volute. Furthermore, compared with the optimized volute, the flow distortion is more sensitive to the pulsating flow conditions in the baseline volute. This is due to the different secondary flow pattern in the cross-sections, hence demonstrating a direction for desired volute cross-sectional shape to be used in a turbocharger radial turbine for internal combustion engine.
This paper presents a combined experimental and numerical analysis of rotating stall in a transonic centrifugal compressor impeller for automotive turbochargers. Stall characteristics of the compressor were examined by two high-response pressure transducers mounted on the casing wall near the impeller inlet. The pressure traces were analyzed by wavelet transforms to estimate the disturbance waves quantitatively. Three-dimensional unsteady internal flow fields were simulated numerically by Detached Eddy Simulation (DES) coupled LES-RANS approach. The analysis results show good agreements on both compressor performance characteristics and the unsteady flow features at the rotating stall. At stall inception, spiral-type breakdown of the full-blade tip leakage vortex was found out at some passages and the brokendown regions propagated against the impeller rotation. This phenomenon changed with throttling, and tornado-type separation vortex caused by the full-blade leading edge separation dominated the flow field at developed stall condition. It is similar to the flow model of short-length scale rotating stall established in an axial compressor rotor.
Recently, the application of turbochargers is increasing because they are effective in improving fuel consumption of engines. One of the most important turbocharger characteristics is compressor operating range, since it has been used in various driving patterns with the advent of variable geometry turbochargers. Owing to the complicated phenomena, such as rotating stall occurring at low flow rate condition, flow analysis is very difficult and details of flow structure have not been fully understood for a long time since the early 1970s. In this study, two compressors with different operating range width were investigated with experimental and computational flow analysis. In the compressor with narrow operating range, the amplitude of blade passing pressure fluctuation decreases rapidly and rotating stall occurs near surging. On the other hand, in the compressor with wide operating range, the blockage by the tip leakage vortex breakdown play a role in stabilizing the flow field and keeping up a high performance even at low flow rates.
High pressure ratio centrifugal compressors are applied to turbochargers and turboshaft engines because of their small dimensions, high efficiency and wide operating range. Such a high pressure ratio centrifugal compressor has a transonic inlet condition accompanied with a shock wave in the inducer portion. It is generally said that extra losses are generated by interaction of the shock wave and the boundary layers on the blade surface. To improve the performance of high pressure ratio centrifugal compressor it is necessary to understand the flow phenomena. Although some research works on transonic impeller flow have been published, some unknown flow physics are still remaining. The authors designed a transonic impeller, with an inlet Mach number is about 1.3, and conducted detailed flow measurements by using Laser Doppler Velocimetry (LDV). In the result the interaction between the shock wave and tip leakage vortex at the inducer and flow distortion at the downstream of inducer were observed. The interaction of the boundary layer and the shock wave was not observed. Also computational flow analysis were conducted and compared with experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.