Abstract. The 2-twist spun trefoil is an example of a sphere that is knotted in 4-dimensional space. A proof is given in this paper that this sphere is distinct from the same sphere with its orientation reversed. Our proof is based on a state-sum invariant for knotted surfaces developed via a cohomology theory of racks and quandles (also known as distributive groupoids).A quandle is a set with a binary operation -the axioms of which model the Reidemeister moves in classical knot theory. Colorings of diagrams of knotted curves and surfaces by quandle elements, together with cocycles of quandles, are used to define state-sum invariants for knotted circles in 3-space and knotted surfaces in 4-space.Cohomology groups of various quandles are computed herein and applied to the study of the state-sum invariants. Non-triviality of the invariants is proved for a variety of knots and links, and conversely, knot invariants are used to prove non-triviality of cohomology for a variety of quandles.
State-sum invariants for knotted curves and surfaces using quandle cohomology were introduced by Laurel Langford and the authors (Quandle cohomology and state-sum invariants of knotted curves and surfaces, preprint). In this paper we present methods to compute the invariants and sample computations. Computer calculations of cohomological dimensions for some quandles are presented. For classical knots, Burau representations together with Maple programs are used to evaluate the invariants for knot table. For knotted surfaces in 4-space, movie methods and surface braid theory are used. Relations between the invariants and symmetries of knots are discussed.
Academic Press
The notion of an abstract link diagram is re-introduced with a relationship with Kauffman's virtual knot theory. It is prove that there is a bijection from the equivalence classes of virtual link diagrams to those of abstract link diagrams. Using abstract link diagrams, we have a geometric interpretation of the group and the quandle of a virtual knot. A generalization to higher dimensional cases is introduced, and the state-sum invariants are treated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.