The notion of an abstract link diagram is re-introduced with a relationship with Kauffman's virtual knot theory. It is prove that there is a bijection from the equivalence classes of virtual link diagrams to those of abstract link diagrams. Using abstract link diagrams, we have a geometric interpretation of the group and the quandle of a virtual knot. A generalization to higher dimensional cases is introduced, and the state-sum invariants are treated.
For an oriented virtual link, L.H. Kauffman defined the fpolynomial (Jones polynomial). The supporting genus of a virtual link diagram is the minimal genus of a surface in which the diagram can be embedded. In this paper we show that the span of the f -polynomial of an alternating virtual link L is determined by the number of crossings of any alternating diagram of L and the supporting genus of the diagram. It is a generalization of Kauffman-Murasugi-Thistlethwaite's theorem. We also prove a similar result for a virtual link diagram that is obtained from an alternating virtual link diagram by virtualizing one real crossing. As a consequence, such a diagram is not equivalent to a classical link diagram.
We study bridge presentations of virtual knots, and determine the virtual bridge numbers of pseudo-prime virtual knots with real crossing numbers less than 5, except two virtual knots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.